
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-7. Maximum Segment Sum (c) Theodore Norvell

Maximum Segment Sum

Consider a constant array A of N integers. E.g.

A :
0 1 2 3 4 5 6 7
−2 +2 −1 +3 −3 +2 +2 −1

︸ ︷︷ ︸
↑ i = 1 ↑ k = 7

A segment is a region of the array defined by two integers

(i, k) with 0 ≤ i ≤ k ≤ N .

The sum of a segment (i, k) is defined as

ss(i, k) �
k−1∑

j=i

A (j)

Note that a segment may be empty (i = k) and the sum

of any empty segment is 0.

The problem is to find the largest sum of all the segments

f = 〈m′ = (max i, k | 0 ≤ i ≤ k ≤ N · ss(i, k))〉

For the example above, what is m′?

First solution tried all segments and hence time increased

as the square of N .

Then someone found a clever algorithm so that time was

proportional to N log2N .

Finally David Gries was shown the problem and, by

considering the invariant, quickly arrived at a solution

with time proportional to N .

Rewrite f as

f = 〈m′ = (max k | 0 ≤ k ≤ N ·msse(k))〉

Typeset February 7, 2012 1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-7. Maximum Segment Sum (c) Theodore Norvell

where msse stands for “maximum sum segment ending

at”

msse(k) � (max i | 0 ≤ i ≤ k · ss(i, k))

Now we can do a linear search to solve f . The invariant

is found by replacing a constant N with a variable n.

I : 0 ≤ n ≤ N ∧ m = (max k | 0 ≤ k ≤ n ·msse(k))

g = (〈I〉 ⇒ f)

f � n,m := 0, 0 ; g

g � while n < N do (n := n + 1;
m := mmaxmsse(n))

[Exercise: Prove the above refinements in detail.]

But of course this is incomplete because we haven’t

given an algorithm to compute msse(n).

We could compute msse(n) with an inner loop — this

leads to the slow algorithm.

Better. Assign a variable p to track the msse(n).

[Remember the tracking variable we used in the ‘slightly

faster (and smaller) square root’ algorithm?]

I.e. add another conjunct to the invariant

p = msse(n)

Typeset February 7, 2012 2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-7. Maximum Segment Sum (c) Theodore Norvell

Now when n changes, so must p.

I : 0 ≤ n ≤ N
∧ m = (max k | 0 ≤ k ≤ n ·msse(k))
∧ p = msse(n)

g = 〈I〉 ⇒ f

f � n,m, p := 0, 0, 0 ; g

g � while n < N do (n, p := n + 1,msse(n + 1) ;
m := m max p)

Is this progress? Yes, if we can compute msse(n + 1)
from p

How does msse(n + 1) relate to msse(n)?

Typeset February 7, 2012 3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-7. Maximum Segment Sum (c) Theodore Norvell

Suppose the maximum sum segment ending at n + 1 is

not an empty segment.

• Then the msse(n + 1) will be A (n) plus the sum of

some segment ending at n.

• Which one? The largest of course. Otherwise

msse(n + 1) would not be maximal. So in this case

msse(n + 1) = A(n) +msse(n)

Suppose the maximum sum segment ending at n + 1 is

empty.

• Then msse(n + 1) = 0

So msse(n+ 1) = 0max (A (n) +msse(n)).

We get

f � n,m, p := 0, 0, 0 ; g

g � while n < N do (n, p := n + 1, 0max (A(n) + p) ;
m := mmax p)

This is another example of a data transformation. We

augmented the state space by adding a variable “p” and

adding to the invariant a constraint that relates its value

to the values of the other variables.

Challenge: Further modify this algorithm to find i and k

such that m = ss(i, k).

Typeset February 7, 2012 4

