
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Further directions in program

correctness

Self-checking code

One of the advantages of using specifications is that it

allows us to annotate code with assertions that we expect

to be true at a given point in time. These assertions can

be checked during execution to help ensure that the

program is working correctly.

Consider the binary search algorithm above. We

can check the precondition to make sure that the

algorithm is only used as appropriate. We can check

the postcondition, to ensure that the algorithm behaved

correctly.

We can also check intermediate assertions (such as loop

invariants) to ensure that computations are proceeding

as expected.

C/C++ provides an assert “macro” for this purpose. Java

provides an assert statement.

Typeset February 2, 2012 1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

#include <assert.h>

...

int nroot(const int x) {

assert(x >= 0) ;

int y = 0, z = x+1 ;

while(z-y > 1) {

int m = y + (z-y)/2 ;

if(m*m <= x) y = m ;

else z = m ; }

assert(y*y <= x && x < (y+1)*(y+1)) ;

return y ; }

One should consider:

• Which assertions should be included in the compiled

versions of the final product?

∗ In my opinion all assertions that are not too costly

of performance should be left in the final product.

• What should be the product’s behaviour when an

assertion fails?

∗ For example dumping an error report and offering

to send it back to the developers.

Typeset February 2, 2012 2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

More interesting algorithms

Complex algorithms can benefit from a formal or semi-

formal treatment.

For example, in Dijkstra’s shortest path algorithm. The

key parts of the invariant are

• For all nodes visited so far, the node is labeled with

the length of the shortest path from the source to the

node.

The idea of data refining algorithm schemes to obtain

algrothms can be extended to algorithmic techniques

such as dynamic programming and greedy algorithms.

Typeset February 2, 2012 3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Correctness of data representations.

Class invariants

In object oriented programming, each object undergoes

a ‘loop’ of use and non use. The body of this loop

is a choice between the bodies of the object’s public

subroutines.

That is, there is an analogy between a class:

class C

private var v : T

public constructor C() (C0)

public method m0() (M0 ; return E0)

public method m1() (M1; return E1)

...

end class

Typeset February 2, 2012 4

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

and a loop

var v : T

C0

while true do (

receive a message

if message is m0 then

M0

reply with E0

else if message is m1 then

M1

reply with E1

...

)

Thus, it is useful to consider invariants for objects.

The invariant specifies the states the object’s fields may

be in before and after calls to the public methods.

Typeset February 2, 2012 5

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Class Specification

We can specify classes by providing them with an

abstract state and specifications for all public methods

For example. Consider a class representing a set of

integers from 0 to 9 inclusive.

class SetSpec

private var s : set of Z

invariant s ⊆ {0, ..10}
public constructor SetSpec()

s := ∅
public method insert(i : int)

precondition 0 ≤ i < 10
s := s ∪ {i}

public method delete(i : int)

precondition 0 ≤ i < 10
s := s− {i}

public method contains(i : int) : B

precondition 0 ≤ i < 10
return i ∈ s

end class

We can see that if the preconditions are respected by

the callers, then the invariant will always be true between

calls.

Typeset February 2, 2012 6

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Class refinement

We can use a data transformation to replace one set of

variables by another without affecting the behaviour of

the class.

For example we augment variable s above by a variable

a : {0, ..10} → B with the additional invariant

∀i ∈ {0, ..10} · a(i) = (i ∈ s)

This additional invariant is called the abstraction

relation.

Typeset February 2, 2012 7

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

class SetAug implements SetSpec

private var s : set of Z

private var a : {0, ..10} → B

invariant

s ⊆ {0, ..10} ∧ (∀i ∈ {0, ..10} · a(i) = (i ∈ s))
public constructor SetAug()

s := ∅ ;
for i ∈ {0, .10} · a(i) := false

public method insert(i : int)

precondition 0 ≤ i < 10
s := s ∪ {i} ; a(i) := true

public method delete(i : int)

precondition 0 ≤ i < 10
s := s− {i} ; a(i) := false

public method contains(i : int) : B

precondition 0 ≤ i < 10
return a(i)

end class

Typeset February 2, 2012 8

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

At this point, we no longer need the variable s except for

documentation. Thus we have

class SetImp implements SetSpec

private var a : {0, ..10} → B

public constructor SetImp()

for i ∈ {0, .10} · a(i) := false
public method insert(i : int)

precondition 0 ≤ i < 10
a(i) := true

public method delete(i : int)

precondition 0 ≤ i < 10
a(i) := false

public method contains(i : int) : B

precondition 0 ≤ i < 10
return a(i)

end class

It is often best to externally document the behaviour of a

class in terms of abstract variables (such as s).

Internal documentation should include the abstraction

relation.

Typeset February 2, 2012 9

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Class Optimization

Consider a class for computing some function.

It doesn’t really matter what the function is, as long as its

domain is finite and reasonably small.

I’ll use
(
n
r

)
—the number of subsets of size r that a set of

size n has— as an example.

Let A = {0, ..a} for some a ∈ N.

Class specification

class ChooseSpec

public constructor ChooseSpec()

skip

public method c(n : A, r : A) : N
precondition 0 ≤ r ≤ n
return

(
n
r

)

end class ChooseSpec

Typeset February 2, 2012 10

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

An implementation

A slow implementation is given by Pascal’s formula

class ChooseSlow implements ChooseSpec

public constructor ChooseSlow() skip

public method c(n : A, r : A) : N
precondition 0 ≤ r ≤ n
if r = 0 ∨ r = n then return 1
else return c(n− 1, r) + c(n− 1, r − 1)

end class ChooseSlow

Typeset February 2, 2012 11

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

An optimized implementation

Use a tracking variable in the form of an array m of

already computed result.

If d(n, r) then m(n, r) holds the precomputed answer

class ChooseMemo implements ChooseSpec

private var d : A×A→ B

private var m : A×A→ N

invariant ∀ (n, r) ∈ A×A·
0 ≤ r ≤ n ∧ d(n, r)⇒ m(n, r) =

(
n
r

)

public constructor ChooseMemo()

for (n, r) ∈ A×A · d(n, r) := false
public method c(n : A, r : A) : N

precondition 0 ≤ r ≤ n
if ¬d(n, r) then (

if r = 0 ∨ r = n then m(n, r) := 1
elsem(n, r) := c(n− 1, r) + c(n− 1, r− 1)
d(n, r) := true;)

return m(n, r)
end class ChooseMemo

Typeset February 2, 2012 12

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

Correctness of parallel programs

Introduce a new operator S || T meaning commands S

and T are executed in parallel.

We assume that S and T are made up of “atomic parts”

that are executed without interruption.

A parallel program such as

(z := y ; w := x) || (x := 0 ; y := 0)

can be thought of as an arbitrary interleaving of its parts:

(z := y ; w := x ; x := 0 ; y := 0)

∨ (z := y ; x := 0 ; w := x ; y := 0)

∨ (z := y ; x := 0 ; y := 0 ; w := x)

∨ (x := 0 ; z := y ; w := x ; y := 0)

∨ (x := 0 ; z := y ; y := 0 ; w := x)

∨ (x := 0 ; y := 0 ; z := y ; w := x)

[Aside: This definition of the parallel operator is

“syntactic” rather than “semantic” in that it relies on

the syntactic notion of parts. For example, if we replace

x := 0 ; y := 0 with the semantically equivalent

y := 0 ; x := 0 we get a different result!]

Typeset February 2, 2012 13

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-8. Further Directions (c) Theodore Norvell

We can understand a command S || T as a loop that

nondeterministically interleaves the atomic parts from S

and T .

while either S or T is not done

do if S is not done then do next part from S

� T is not done then do the next part from T

Now the invariant of this loop becomes very important,

as it is the only thing that we can depend on between

executions of actions.

For example (z := y ; w := x) || (x := 0 ; y := 0) can be

thought of as

var c0, c1 := 0, 0

while (c0 < 2) ∨ (c1 < 2)

do if c0 = 0 then (z := y; c0 := 1)
� c0 = 1 then (w := x; c0 := 2)
� c1 = 0 then (x := 0; c1 := 1)
� c1 = 1 then (y := 0; c1 := 2)

The theory and practice of concurrent programming will

be the subject of ENGI-9869 in the spring term.

Typeset February 2, 2012 14

