
Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Reactive Systems

A finite state machine is similar to a finite state recognizer, but

may include output as well as input.

Finite State Machine

Consider a machine A = (S,O,Q, qstart, T) where

• S is an input alphabet

• O is an output alphabet

• Q is a finite set of states

• qstart is the initial state

• T is a set of transitions fromQ×
(
S1 ∪ {ε}

)
×
(
O1 ∪ {ε}

)
×

Q

We assume S ∩ O = ∅.

Such a machine defines a set of strings L(A) ⊆ (S ∪O)∗:

If there is a path from qstart to some state in Q and

• s is the catenation of input and output labels along that path,

• then s ∈ L(A).

Application to digital circuits

If the machine is free of εs on both inputs or outputs, then each

input is followed by a corresponding output. This gives a good

model for synchronous digital systems.

Example: Let S = {00, 01, 10, 11} and O = {0, 1}

March 2, 2010 1

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

0 1
11 / 0

00 / 1

01 / 1

00 / 0

01 / 0

11 / 1

10 / 1 10 / 0

Now we have a serial adder. If we feed in two numbers,

least-significant bit first, the machine produces the sum. E.g.

we have

[10 1 00 0 11 0 01 0 10 0 00 1 11 0 01 0 10 0 00 1

corresponding to the sum.

0101010101
0011001100

1000100001

March 2, 2010 2

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

System modelling and StateCharts

Reactive systems

Reactive systems are systems that must react to events.

• A Calculator must react to the keypresses

• A Microwave oven must react to keypresses and also to the

passage of time.

• An internet Router must react to the arrival of packets

• A synchronous hardware circuit must react to the clock

ticks.

• Most systems can be viewed as reactive.

We can specify and/or model a reactive system using state

machines.

StateCharts

StateCharts is a diagrammatic language for modelling finite

state systems.

There are various flavours of StateCharts.

I’ll be using UML StateCharts.

Transitions

Our terminal alphabet now consist of a set of events.

Each transition from state to state is labelled

trigger [condition] / reaction

where

March 2, 2010 3

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

• the trigger is an event that triggers the transition

• the condition is a boolean expression

• the reaction is either

∗ an event that is generated,

∗ or a change to the system’s state variables

Example: A Clap-light.

Off

Dim

Bright

Clap / level := 60W Clap / level := 120 W

Clap / level := 0 W

/ level := 0 W

Data Dictionary:

Entity Kind Description

Clap Event Occurs when

a single clapping sound is

detected.

level System variable The amount of power sent

to the lights.

March 2, 2010 4

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Here there are 3 states. One event: Clap and reactions that

change the system’s state variable level.

If the system is in state Off and a Clap event occurs, then

• immediately and simultaneously

• level is set to 60W and the system state changes of Dim.

Transitions in detail

Transitions are labeled as:

(trigger)? ([condition])?(/ reaction)?

• If the trigger event is omitted,

∗ the transition is taken as soon as the condition is true.

• If the condition part is omitted,

∗ the condition is true

• If the reaction is omitted

∗ there is no reaction, only a state change.

Conditions

Conditions can be used to inhibit transitions:

Operating Shutdown
RadiationReport(r) [r > 100]

Notice the event is parameterized.

March 2, 2010 5

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Conditions can also be used to choose between transitions:

HoldCourse

WheelToStarboard

WheelToPort

CourseErrorReport(e) [e < -5deg]

CourseErrorReport(e) [e > +5deg]

We could also illustrate this as: (The diamond is not a state.)

HoldCourse

WheelToPort

WheelToStarboard

CourseErrorReport(e)

[e < -5 deg]

[e > + 5 deg]

Time

It is important to realize:

March 2, 2010 6

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Time passes in the states.

Thus transitions are essentially instantaneous.

What if you want a delay?

For real-time systems, the passage of time is an important kind

of event.

• after: 1 second is an event that happens 1 second after the

source state was entered.

• when(11:59 AM) is an event that takes place at 11:59

AM.

Right

Ready

Left

Lockout

LeftTouch / redLight := on RightTouch / greenLight := on

after: 45 ms +- 5 ms after: 45 ms +- 5 ms

RightTouch / greenLight:= on LeftTouch / redLight := on

Hierarchy

Time passes within states.

During that time the system need not be idle.

March 2, 2010 7

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

We can divide states into substates

Half

Impulse

Impulse
Warp

Full

Impulse

Warp 1

Warp 5

Warp 10

up down

up
down

up
down

ToWarp

LeaveWarp

When this system is in state Impulse it will be in exactly one

of the substates Half Impulse or Full Impulse.

When it is in state Warp it will be in exactly one of its 3

substates.

At system start the system is in both states Impulse and Half

Impulse.

If the system is in state Impulse and a ToWarp event happens,

the system will transition to both states Warp and Warp 1.

States like Impulse and Warp are called “or” states, since

when the system is in an “or” state, it is also in exactly one of

the “or” state’s substates.

States with no substates are called “basic” states.

The term “state” is being abused here since a system should

really be in exactly one state at a time. The set of StateChart

states the system is in constitutes its “true” state.

March 2, 2010 8

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Some people prefer to call “or states” “modes”.

Concurrency.

When the system is in an “and” state, it is also in all of the

“and” state’s substates.

The substates of an “and” state are always “or” states.

An example (transitions omitted)

Wheels

LFree
RFree

LLocked
RLocked

LForward RForwardLReverse RReverse

Left Right

Wheels is an “and” state.

Its substates are Left and Right which are both “or” states.

The system could be in states Wheels, Left, Right, LReverse,

and RLocked all at the same time.

March 2, 2010 9

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

The substates of an “and” state act as concurrent state

machines.

Communication

You can use events to coordinate actions of concurrent state

machines.

If a transition has an event as its reaction,

• that event can trigger a transition out of any state the system

is in.

Example:

Waiting Disarmed

Locked

after: 30seconds

codeEntered / disarm

Idle

Preparing
disarm

If the system is in both Waiting and Preparing then a

codeEntered event causes a disarm event and the new states

will include Disarmed and Idle.

March 2, 2010 10

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

System modelling and StateCharts

A Microwave oven Example

Transmitter0

1 2 3

4 5 6

7 8 9

Time

Power

Start

Stop Controller

1:10:55

Door
Sensor Beeper

Inputs

Entity Type Description

timeButton Event The time button is pressed

powerButton Event The power button is pressed

startButton Event The start button is pressed

stopButton Event The stop button is pressed

digitButton(d:0..9) Event A button 0 to 9 is pressed

door Variable Can be in states open or closed.

March 2, 2010 11

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Outputs

Entity Type Description

transmitter Variable The power level of the transmitter {0,1,..,10}

display Variable An alpha-numeric display with 6 characters.

beep Event Initiate a beeping sound

Local entities

Entity Type Description

time Variable A natual number. In units of seconds

power Variable A natural number {1,..,10}

March 2, 2010 12

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Overall behavior

Ready

entry/ tramsmitter := 0
do/ display := "Ready"

UpdateTime

do/ display := timeToString(time)
exit/ power := 10

Cook

entry/ time := time - 1
do/ display := timeToString(time)

UpdatePower

do/ display := powerToString(power)

timeButton / time:=0

startButton

stopButton

powerButton
[time > 0]

startButton
[time > 0]

Note

• “entry” actions are performed whenever the state is entered.

• “do” actions are performed continuously when the state is

active

• “exit” actions are performed whenever the state is executed.

March 2, 2010 13

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

A closer look at the UpdateTime state

We add more detail by adding a transition for digitButton

events in the UpdateTime state.

Update
Time

digitButton(digitValue) / time := addDigit(time, digitValue)

Where function addDigit is defined by
addDigit(t, d) = (t/60)*600 + ((t%60)/10)*60 + (t%10)*10 + d

timeButton / time := 0

The UpdatePower

DigitButton events in the UpdatePower state.

Update
Power

digitButton(d)[d != 0] / power := d

March 2, 2010 14

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

The Cook state

Cook

entry/ time := time - 1
do/ display := timeToString(time)

Standby

TransmitterOff

entry/ transmitter := 0

TransmitterOn

entry/ transmitter := power

Ready

entry/ tramsmitter := 0
do/ display := "Ready"

stopButton

Standby

TransmitterOff

entry/ transmitter := 0

TransmitterOn

entry/ transmitter := power

[door is open]

[door is open]

startButton

[door is closed]

after: 1 s

[door is closed]

[door is open]

[time > 0] / time := time - 1

[time = 0] ^beep

Cook

entry/ time := time - 1
do/ display := timeToString(time)

Standby

TransmitterOff

entry/ transmitter := 0

TransmitterOn

entry/ transmitter := power

Ready

entry/ tramsmitter := 0
do/ display := "Ready"

Standby

TransmitterOff

entry/ transmitter := 0

TransmitterOn

entry/ transmitter := power

stopButton

[door is open]

[door is closed]

startButton

[door is open]

after: 1 s

[time = 0] ^beep

[door is closed]

[door is open]

Note that ^beep means a beep event occurs as a reaction.

I claim that “the door is open implies transmitter = 0” is a

global invariant.

March 2, 2010 15

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Using StateCharts to model software

classes

Reactive Systems and objects have a lot in common.

• Reactive systems react to events

• Classes react to method invocations.

• Reactive systems have states on which behaviour depends

• Classes have states on which behaviour depends.

Input Events:

• Method calls to this object

Input variables:

• Variables and objects known to the class

Output events

• Calls to objects known to the class

Output variables

• Variables and objects changeable by this object.

March 2, 2010 16

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Relationship to other UML diagrams:

• Class diagrams describe the “static” relationships between

classes.

• Sequence and collaboration diagrams show examples of

behaviour.

• StateCharts describe behaviour.

An Example

A savings account.

Account can not be debited once overdrawn:

Account
balance : int

withdraw(amount : int)
deposit(amount : int)

March 2, 2010 17

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

The behaviour as a state chart:

Black

Red

withdraw(amt) / Reject

deposit

deposit(amt) / balance
:= balance+amt

[balance < amt]

[balance >=amt]
withdraw(amt) /

balance := balance - amt

[amt < -balance]

[amt >= -balance]

Invariant: in(Red) iff balance < 0

 / balance:=0

March 2, 2010 18

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

In C++

class Account {
public: Account() { balance = 0 ; }
public: withdraw(int amt) {

if(balance >= 0) balance -= amt ;
else throw Reject ; }

public: deposit(int amt) {
balance += amt ; }

} ;

In this case the state diagram is not simpler than the

implementation itself.

This is because the class is very simple.

March 2, 2010 19

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Another example:

This class represents a source of network messages.

• It must be initialized before being used and should be

shutdown after use.

• It observes a network channel. Thus the network channel is

an input variable.

• The client of this class may use it to get lines.

Client_network_layer

init()
shutdown()
get_line(str : StringBuffer) : boolean

networkConnection

0..1

0..1

0..1

0..1

March 2, 2010 20

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

State diagram for Client_network_layer:

Initialized

No pending message Message is pendingNo pending message Message is pending

Uninitialized

init / open connection

get_line(str) / no_get

[message
has arrived]

get_line(str) / get

shutdown / close the connection

-- Action "get" means set str to the last received
message and return true.
--Action "no_get" means return false.

State diagram for class Client_network_layer, showing how
get_line works.

Notice that the state can change in response to changes in the

observed variable.

The actual implementation of this class is quite a bit more

complex than the state machine, since the implementation

must attempt to determine which state the object is in by

querying the network connection.

March 2, 2010 21

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

A Case Study — The RunEditor Dialog

The RunEditor is a GUI class that controls the running of a

series of tests on student assignments. The user can pick one

or more students and select go. The actual running of the tests

is done by a separate worker thread, which takes some time to

stop.

The dialog includes 5 buttons, a progress bar, and a list of

students.

Buttons are: Go, Dismiss, Stop, Select-All, Select-None

March 2, 2010 22

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

JDialog

RunEditor JButton

5

JProgressBar

1

JList

1

JCheckBox

1

StateChart

The class has 3 major states

• Waiting. The user: can select students from list, initiate run

(if students are selected), dismiss the dialog.

• Running. The user: can initiate a stop.

• Stop. The user must wait until the stop is complete.

Note the StateChart on the next slide is a simplification as

it omits the state of the selection buttons, the list, and the

progress bar, as well as state inherited from JDialog.

Note that the state of the buttons is properly a part of the state

of the RunEditor. This is because the relationship between

these classes is one of Aggregation.

March 2, 2010 23

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Data Dictionary:

External Entity Kind In/Out Description

clickOnGo event in User clicks on go button

clickOnStop event in User clicks on stop button

clickOnDismiss event in User clicks on dismiss button

create worker task event out A worker thread is created.

request task stops event out Request thread to stop.

worker task finished event in A worker thread completes.

All other signals on the diagram are internal.

March 2, 2010 24

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

entry/disableStop,enableDismiss,enableGo,enableSelectNone,enableSelectAll

Waiting

entry/enableStop,disableDismiss,disableGo,disableSelectAll,disableSelectNone

Running

entry/disableStop,disableDismiss,disableSelectAll,disableSelectNone,disableGo

Stopping

go / create worker task

stop / request task stops

worker task finished

goButtonDisabled goButtonEnabled

enableGo [anySelected]

disableGo

clickOnGo / go

stopButtonDisabled stopButtonEnabled

enableStop

disableStop

clickOnStop / stop

dismiss

dismissButtonDisabled dismissButtonEnabled

enableDismiss

disableDismiss

clickOnDismiss / dismiss

[anySelected]

RunEditor

[not anySelected]

March 2, 2010 25

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Implementation

JButtons ‘know’ if the are enabled. We represent the state with

fields

private final int WAITING = 0, RUNNING = 1, STOPPING
= 2 , INIT = 3 ;
private int state = INIT ;
JButton goButton = new JButton();
JButton dismissButton = new JButton();
JButton stopButton = new JButton();
... // and more

(The INIT ‘state’ is used only during construction)

The abstraction relation relates the states in the chart (left) to

those in the code (right)

(in Waiting iff state=WAITING)

and (in Running iff state=RUNNING)

and (in Stopping iff state=STOPPING)

and (in goButtonEnabled iff goButton.isEnabled())

and (in goButtonDisabled iff not goButton.isEnabled())

and (in stopButtonEnabled iff stopButton.isEnabled())

and (in stopButtonDisabled iff not stopButtonIsEnabled())

and (in dismissButtonEnabled iff dismissButton.isEnabled())

and (in dismissButtonDisabled iff not dismissButton.isEnabled())

... and more

March 2, 2010 26

Advanced Computing Concepts Slide Set 1-3. Finite state models of Reactive Systems. Theodore Norvell

Implementation continued

It is useful to centralize the state switching code in one

subroutine

private void changeState(int newState) {
if(newState == WAITING) {

if(studentList.getModel().getSize() != 0)
listLabel.setText(”Select students...”);

else listLabel.setText(”No students ...”) ;
removeProgressBar() ;
goButton.getModel().setEnabled(anySlctd());
dismissButton.getModel().setEnabled(true);
stopButton.getModel().setEnabled(false);
allButton.getModel().setEnabled(true);
noneButton.getModel().setEnabled(true); }

else if(newState == RUNNING) {
... code to enter Running state... }

else if(newState == STOPPING) {
...code to enter Stopping State... }

state = newState ;
}

March 2, 2010 27

