
Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Polynomial time algorithms and

problems

A key distinction can be made between algorithms that

have polynomial time performance and ones that don’t.

Intractable algorithms

An algorithm with worst-case time complexity Ω(2N)
will (for large enough input) take more time that any

algorithm with worst case time complexity in O(Nk) for

any k, even, e.g. O(N100).

We call an algorithm intractable if there is no fixed k such

that its worst-case time complexity is O
(
Nk
)
.

Tractable algorithms

An algorithm with worst case time complexity in O(Nk)
for small fixed k will finish in a “reasonable” amount of

time on “reasonable” sized inputs.

We call algorithms tractable if their worst-case time is in

O(Nk) for some fixed k.

In practice k is usually ≤ 6. So “tractable � practical”

Type set April 9, 2014 1

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

A Table

The following table assumes each operation takes 1 ns.
Recall that the universe is about 15× 109 y old.

N=10 N=50 N=100 N=1000

N 10 ns 50 ns 100 ns 1µs
N log2N 33 ns 282 ns 664 ns 10µs
N2 100 ns 2.5µs 10µs 1ms
N3 1µs 125µs 1ms 1 s
N100 3× 1083y 2.5× 10179y 3× 10209y 3× 10310y
1.1N 2.6 ns 117 ns 13µs 8× 1050y
2N 1µs 3. 5× 1024y 4× 1039y 3× 10310y
N ! 3ms 10× 1073y 3× 10167y 1.3× 102577y

22
N

6× 10317y big Bigger HUGE

Note that polynomial time algorithms with large

exponents are not common.

And exponential time algorithms with bases very close to

1 are not common.

Type set April 9, 2014 2

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

But computers are getting faster ‘exponen-

tially’

Suppose

• This year’s computer takes 1 ns per operation.

• Next year’s computer is twice as fast as this year’s.

• 1 day is a reasonable time to solve our problem.

For an algorithm that takes N2operations

• This year: N = 9.2× 106.

• Next year: N = 13× 106.

For an algorithm that takes 2N operations

log2
(
60× 60× 24× 109

)
= 46. 296

• This year: N = 46.

• Next year: N = 47.

Type set April 9, 2014 3

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

An intractable algorithm

A propositional formula is a formula made using

boolean variables (propositional variables), logical

connectives, such as ∧, ∨, ¬, ⇒, and parentheses.

A propositional formula is said to be satisfiable iff there

is at least one assignment of boolean values to its

variables so that it evaluates to true.

In other words, a propositional formula is satisfiable

iff there is at least one row in its truth table so that it

evaluates to true.

Examples:
v0 v1 (v0 ∨ v1) ∧ (¬v0 ∧ ¬v1)
false false false

false true false

true false false

true true false

v0 v1 (v0 ∧ v1) ∨ (¬v0 ∧ ¬v1)
false false true

false true false

true false false

true true true

Type set April 9, 2014 4

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Consider this problem.

• Input: A propositional formula φ of size N with

propositional variables {v0, v1, ..., vm−1}

• Output: ‘yes’ if there exist values of the variables to

make the formula true. Otherwise ‘no’

This is called “the propositional satisfiability problem”

(PSAT).

Examples

• Input: (v0 ∨ v1) ∧ (¬v0 ∧ ¬v1) Output: no

• Input: (v0 ∧ v1)∨ (¬v0 ∧¬v1) Output: yes. For example

{“v0”�→ false,“v1” �→ false}

Backtracking algorithm

let {v0, v1, ..., vm−1} be the variables of φ
for v0 ∈ {true, false}

for v1 ∈ {true, false}
...

for vm−1 ∈ {true, false}
if v satisfies φ output yes and stop

output no

We can also write it, in more Java-like fashion, with a

recursive subroutine

public class Formula {

public boolean evaluate(boolean[] v) { ... }
...

Type set April 9, 2014 5

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

private boolean search(int i, boolean[] v) {

// pre: v.length==getVarCount()

if(i == v.length) {

return evaluate(v) ; }

else {

for(int k=0 ; k < 2 ; ++k) {

v[i] = (k==0) ;

if(search(i+1, v)) return true ; }

return false ; } }

public boolean isSatisfiable() {

boolean[] v = new boolean[getVarCount()] ;

return search(0, v) ; } }

Tractable and intractable problems

If any algorithm for a problem is tractable, the problem is

tractable.

If every algorithm for a problem is intractable, the problem

is intractable.

Decision problems are problems with yes/no outputs.

We call the set of tractable decision problems P.

Some tractable problems:

• Sorting has an O(N logN) algorithm and so is

tractable.

• Determining the shortest path between two points in a

graph is tractable.

• Determining if an N digit number is prime is tractable.
Type set April 9, 2014 6

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

It is in P.

Intractable problems:

• Determining if a theorem has a proof in certain simple

logics is intractable.

Type set April 9, 2014 7

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Is PSAT intractable?

The algorithms given above are intractable. They are

Ω(2m).

But that does not imply that PSAT is an intractable

problem.

After all, couldn’t there be better algorithms?

One bad algorithm does not imply the problem is hard!

The truth is that I don’t know if PSAT is intractable.

• I don’t know a fast way to solve the problem.

∗ Can you find one?

• I can’t show that all algorithms for PSAT are slow

∗ Can you show there is no fast algortihm?

Some problems whose tractability is not known!

• Given a number, what are its factors.

• Find the longest (cycle free) path between two points

in a graph.

• Find the shortest tour in a graph that visits every node.

(TSP)

• Given a formula, is it satisfiable (PSAT).

• Given a map (planar graph), can it be coloured with 3

colours?

• Given a graph, how many colours are needed to colour

it.

• Given a sequence of machine code with no branches,

what is the shortest equivalent sequence.

Type set April 9, 2014 8

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

• Given a sequence of C code with no branches, what is

the minimum number of registers required to execute

it.

• Given a set of files, what is the minimum number of

disks (of fixed size) required to hold them all.

Amazingly, with the exception of factoring, the above

problems all have similar tractability.

I.e. they are either all tractable or all intractable.

We just don’t know which.

These problems form a class known as NP-equivalent.

We say P is as tractable as Q if ‘Q is tractable’ implies

‘P is tractable’

We say P is as intractable as Q if ‘Q is intractable’ implies

‘P is intractable’

We’re going to spend the next while looking at the tools

you need

• to show that problems are as tractable as the NP-

equivalent one and

• to show that problems are as intractable as the

NP-equivalent ones

If a problem is both as-tractable-as and as-intractable-as

the NP-equivalent problems, then it too is NP-equivalent.

Type set April 9, 2014 9

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Decision problem versions

Most of the problems just mentioned are not decision

problems.

However, one can usually find a related decision problem

that is equally tractable.

A example: The travelling salesperson problem.

• The travelling salesperson problem (optimization

version)

∗ Input: A list of cities and, for each pair of cities, an

integer distance.

∗ Output: A shortest tour that visits every node.

• The travelling salesperson problem (decision version)

(TSPD)

∗ Input: A list of cities, for each pair of cities, an

integer distance, and an integer k

∗ Output: ‘Yes’ if there is a tour that visits every node

and has length ≤ k, otherwise, ‘no’

The optimization version is intractable if the decision

version is intractable.

Type set April 9, 2014 10

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Another example. Factoring

The input size is the number of bits needed to represent

n.

• Factoring (search version)

∗ Input: a natural number n

∗ Output: the smallest factor of n greater than 1.

• Factoring (decision version)

∗ Input: natural numbers n and k

∗ Output: ‘Yes’ if n has a factor smaller than k.

Otherwise, ‘no’.

The search version is tractable iff the decision version is

tractable. (Consider binary search.)

Because we can find decision problems that are just as

hard as the search problems, we will focus on decision

problems.

Type set April 9, 2014 11

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

NP problems

Recall that P is the set of decision problems with

polynomial time solutions.

Magic Coins

A magically nondeterministic algorithm for a decision

problem is allowed one more operation, which we will

assume is Θ(1) time.

• boolean magicCoin()

magicCoin returns true or false, but magically always

returns an answer that leads to a “yes” output if there is

one.

An algorithm for PSAT using magicCoin()

public class Formula {

public boolean evaluate(boolean[] v) { ... }
...

public boolean isSatisfiable() {

boolean[] v = new boolean[getVarCount()] ;

for(int i=0 ; i < m ; ++i) v[i] = magicCoin() ;

return evaluate(v) ; } }

This algorithm has the properties that

• the input formula is satisfiable iff there exists a

sequence of answers from the magic coin that leads

the algorithm to answer “Yes”

• it is a polynomial time algorithm

Type set April 9, 2014 12

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

However, note that because this algorithm relies on

magical nondeterminism — a mechanism that is, in

general, impractical to implement— we do not consider

that it is a regular polynomial time algorithm.

Thus, we do not consider this algorithm as evidence that

PSAT ∈ P

NP (magic coin definition)

NP is the set of decision problems with magically

nondeterministic, polynomial-time algorithms.

Since the above algorithm is a linear time algorithm,

PSAT is in NP.

NP (ordinary coin definition)

Suppose we only have only an ordinary coin, i.e. a

coin that unpredicatably sometimes gives heads and

sometimes gives tails. It doesn’t need to be a fair coin:

one that comes up heads 60% of the time and tails %40

of the time, is ok.

NP is the set of decision problems for which we can write

a polynomial time algorithm (using an ordinary coin)

such that

• When the correct answer is ‘no’ the algorithm outputs

‘no’.

• When the correct answer is ‘yes’, the algorithm may

output ‘yes’.

Equivalence with the magic coin definition

Type set April 9, 2014 13

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

• If we have an ordinary-coin algorithm, we can replace

the ordinary coin with a magic coin to get a magic-coin

algorithm.

• If we have a magic-coin algorithm, we can replace

the ordinary coin with an ordinary coin to get an

ordinary-coin algorithm.

NP (certificate checking definition)

NP can also be defined as decision problems whose

“yes” answers can be checked in polynomial time given

some evidence of polynomial size.

Imagine an algorithm for a decision problem that has two

parts.

• The first part generates a “certificate” of polynomial

size. The first part can take any amount of time.

• The second part reads the input and the “certificate”

and computes the answer (‘yes’ or ‘no’) in polynomial

time.

Define a problem to be in NP iff there is a (nonmagical)

algorithm with this structure that solves the problem.

Example: We can construct an algorithm for factoring:

Does n have a factor of size less than k?
Type set April 9, 2014 14

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

• If n is has a factor smaller than k, the certificate

generator outputs such a facto p and q = n/p.

• Otherwise, the certificate generator outputs any two

numbers less than n.

• The certificate checker checks that p < k and that

pq = n.

Example: We can construct an algorithm for PSAT.

• If the input formula φ is satisfiable, first certificate

generator outputs an assignment of boolean values to

the propositional variables that satisfies φ.

• Otherwise the certificate generator outputs any

assignment of boolean values to the propositional

values.

• The certificate checker reads in the formula and the

assignment and outputs the value of the formula for

that assignment.

Type set April 9, 2014 15

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Problem Certificate Check

Is an N bit

number

composite?

2 proposed

factors

Multiply and

compare

PSAT Values for the

variables

Evaluate φ and

compare to true

Can a map be 3

coloured?

A colour

scheme

Compare

colours of all

adjacent

countries

Is there a tour of

a graph shorter

than length k?

A tour Calculate the

length of the

tour and

compare to k.

Equivalence with the magic coin definition

• The sequence of magic coin results will serve as a

certificate.

• The binary coding of a certificate can serve as a

sequence of magic coin results.

P ⊆ NP

NP and co-NP (optional)

The complement Q of a decision problem Q is simply

the problem that has ‘no’ answers and ‘yes’ answers the

other way around. I.e.

Q(x) = ¬Q(x), for all inputs x

Type set April 9, 2014 16

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

co-NP is the set of problems whose complements are in

NP.

For example PSAT (unsatisfiability) is the problem

of determining whether a propositional formula is

unsatisfiable. (I.e., it is false for every line of the truth

table.)

P ⊆ co-NP For any problem Q in P, its complement Q
will also be in P and thus also in NP.

It is widely believed that NP and co-NP are not equal.

For example, it is widely beleived that PSAT is inNP, but

not in co-NP and (equivalently) that PSAT is in co-NP,

but not in NP.

It might be helpful to see why PSAT can not be trivially

proved to be in NP.

Magic coin perspective

Consider the following nonproof that PSAT is in NP.

Start of nonproof: Here is a Java algorithm for PSAT

using magicCoin()

public class Formula {

public boolean evaluate(boolean[] v) { ... }
...

public boolean isUnsatisfiable() {

boolean[] v = new boolean[getVarCount()] ;

for(int i=0 ; i < m ; ++i) v[i] = magicCoin() ;

return ! evaluate(v) ; } } // Note the “!”.

Type set April 9, 2014 17

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

If the formula is unsatisfiable, the algorithm certainly

returns true (‘yes’). No magic is needed.

If the formula is satisfiable, the coin (magically) ensures

that v is set to a line in the truth table for which the

evalutation is true and thus the algorithm returns false

(‘no’). QED.

End of nonproof.

Why is this a nonproof? The magic coin is (by definition)

helpful only for ‘yes’ inputs. For ‘no’ inputs, the coin is no

better than any other coin. The nonproof is relying on the

coin behaving magically for ‘no’ inputs.

Certificate perspective.

It is not obvious that there is always a sufficiently short

certificate to show that a formula is unsatisfiable. Here

are two examples of certificates that won’t work.

• If the certificate consists of an assignment for which

the formula is false, this is insufficient evidence, as

there may be other assignments for which the formula

is true.

• If the certificate consists of every row for which the

formula is false, it may be more than polynomially long

(m× 2m bits) and will take too long to check.

(End of optional section.)

Magic nondeterminsm vs regular nondeter-

Type set April 9, 2014 18

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

minism (optional)

[This section is entirely optional. It is here for the

gratification of any student who might be wondering

how the nonderminism of the magic coins used here

(and in the earlier section on NDFRs) relates to the

nondeterminism we saw in the first part of the course.]

Let’s look at magic nondeterminism from the point of view

of nondeterministic specifications as presented earlier in

the course.

Define a programming construct

try f else g

This is defined by

(try f else g) (i † o) =
((∃ȯ · f (i † ȯ)) ∧ f (i † o))

∨ (¬ (∃ȯ · f (i † ȯ)) ∧ g (i † o))
Essentially try f else g behaves like f , if possible, and

otherwise behaves like g.

Note that if f is implementable then try f else g is the

same as f . The construct is only interesting if f is not

implementable.

Note that try f else g is implementable if g is

implementable, even if f is not implementable.

Now define a construct that is not always implementable:

force A

ensures thatA is true, but does not change any variables

(force A) = 〈A〉 ∧ skip

Force is generally not implementable, as it restricts its

initial state to one where A is true.
Type set April 9, 2014 19

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

A command f ; force A accepts all behaviors accepted

by f such that A is true of the final state.

Finally we define an ordinary (nonmagical)

nondeterministic coin flip as follows.

flip V = ((V := true) ∨ (V := false))

Now suppose the result of our algorithm is to go into a

boolean variable b. For example, the specification may

be 〈b′ = Q(x)〉 where x is the input and Q is a boolean

function.

We can understand a polynomial time ‘magic coins

algorithm’ as an algorithm of the following form

try (f ; force b) else b := false

where f is a polynomial-time algorithm that uses no

nondeterminism other than flip commands and b is

the boolean variable that receives the decision. The

specification for f here is twofold:

• In the case of a ‘no’ input, f must ensure b′ is false

〈¬Q(x)⇒ ¬b′〉 � f That is

〈b′ ⇒ Q(x)〉 � f

• In the case of a ‘yes’ input, f must allow the possibility

that b′ is true:

∀i | Q (i (“x”)) · ∃o | o (“b”) · f(i † o)

Now one can show that

〈b′ = Q(x)〉 � try (f ; force b) else b := false

Type set April 9, 2014 20

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

For example we can refine 〈b′ = PSAT (φ)〉 by

try






let m = the number of variables in φ·
var v : Bm·
for i ∈ {0, ..m} do flip v[i] ;
b := evaluate(φ,m) ;
force b






else b := false

The effect of the force b is to ensure that the flips go the

right way, if at all possible. In a sense, it adds the magic

to the nondeterministic flips.

(End of optional section.)

NP-hard and NP-easy

The following definitions apply to all problems, not just

decision problems.

A problem P is called NP-easy if it is as tractable as

some problem in NP

A problem P is called NP-hard if it is as intractable as

every problem in NP

A problem P is calledNP-equivalent if it is bothNP-hard

and NP-easy.

Next we look at a technique to show that one decision

problem is as-tractable-as another.

Type set April 9, 2014 21

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Reducibility

We can polynomially reduce a decision problem Q to a

decision problem R, if we can find an algorithm of the

following form for Q that returns the correct decision:

Read input x for problem Q
Transform x to an input y for problem R in polynomial

time

Output R(y)

Definition: A decision problem Q can be (polynomially)

reduced to a decision problem R iff there exists a function

f , that has a polynomial time algorithm, such that

Q(x) = R(f (x)), for all x

Notation: We write Q
p
→ R to mean Q can be

polynomially reduced to R.

f R

Input to Q Input to R {yes, no}

If Q can be reduced to R (Q
p
→ R) then:

• If R is tractable

∗ then Q is tractable.

• If Q is intractable,

∗ then R is intractable.

Type set April 9, 2014 22

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Now if R is reducible to Q and Q is reducible to R (i.e.

Q
p
→ R ∧R

p
→ Q) then

• R is tractable iff Q is tractable

• R is intractable iff Q is intractable

If Q can be reduced to R and R can be reduced to S (i.e.

Q
p
→ R ∧R

p
→ S) then

• Q can be reduced to S.(i.e. Q
p
→ S)

• Proof: Suppose Q(x) = R(f (x)), for all x, and

R(x) = S(g(x)), for all x, where f and g take

polynomial time.

∗ Let h(x) = g(f(x)), for all x;. h will take polynomial

time

∗ Q(x) = R(f (x)) = S(g(f (x))) = S(h(x)), for all x.

S

Input to SInput to R
{yes, no}

gf

Input to Q

So, if we have a cycle of decision problems Q0, Q1, ...,

Qn, with Qn = Q0, and each is reducible to the next

• then either all are tractable or none are tractable.

An easy example

An undirected graph is a pair of sets (V,E) where

E ⊆ {a, b ∈ V | a �= b · {a, b}}.

Type set April 9, 2014 23

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

• The set V is called the set of ‘nodes’ (or ‘vertices’)

• The set E is called the set of ‘edges’ (or ‘arcs’)

A path in a graph is a sequence of nodes [a0, a1, .., ak]
where each {ai, ai+1} is in E.

A cycle (or circuit) is a path where {ak, a0} is also an

edge.

A Hamiltonian circuit is a cycle that contains every node

once.

Type set April 9, 2014 24

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Hamiltonian circuit problem (HC):

• INPUT: An undirected graph G = (V,E)

• QUESTION: Is there a Hamiltonian circuit?

Traveling salesperson decision problem (TSDP):

• INPUT: A finite set of cities C, a distance function

d : C × C → N, and an integer bound B.

• QUESTION: Is there a tour that visits every city once

and then returns to the first city, of total length ≤ B?

I.e. is there way to number all the cities
[
c0, c1, ..., c|C|−1

]

such that

d(c|C|−1, c0) +
∑

i∈{0,..|C|−1}

d(ci, ci+1) ≤ B

Finding a transformation

We will show that the Hamiltonian circuit problem is

reducible to the TSDP. And thus that the Hamiltonian

circuit problem is no more intractable than the TSDP.

(i) Transformation: Given an input G = (V,E) for the

HC problem, construct an input (C, d,B) for TSDP as

follows:

Let C = V , let B = |V | and let

d(a, b) =

{
1 if {a, b} ∈ E
2 if {a, b} /∈ E

Type set April 9, 2014 25

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

TSDP

G (C,d,B) {yes, no}

HC

We need to argue

(ii) that this transformation takes only polynomial time,

and

(iii) that the answer to TSDP on (C, d,B) is yes if and

only if the answer to HC on G is yes, where G is any input

for HC and (C, d,B) is the result of the transformation

applied to G.

(ii) The transformation is clearly linear time assuming a

reasonable representation of the graph.

(iii) Let G be any graph at all and let (C, d,B) be the

output of the transformation if G is the input.

(α) We must show that: If G is a ‘yes’ input for HC, then

(C, d,B) is a ‘yes’ input for TSDP.

If HC gives ‘yes’ on G, then there is a cycle[
a0, a1, ..., a|V |−1

]
containing every node once. Thus,

{a0, a1}, {a1, a2} , etc, and
{
a|V |−1, a0

}
are all the edges

in G. Because of the way d is constructed, d(a0, a1) = 1,

d(a1, a2) = 1, etc, and d(a|V |−1, a0) = 1, so this order gives

a tour of the cities of length

d(a|V |−1, a0) +
∑

i∈{0,..|C|−1}

d(ai, ai+1) = |V | = B

Type set April 9, 2014 26

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

(β) We must show that: If (C, d,B) is a ‘yes’ input for

TSDP, then G is a ‘yes’ input for HC.

If TSDP gives ‘yes’ on (C, d,B) then there is a tour[
a0, a1, ..., a|V |−1

]
of length |V |. Thus

d(a|V |−1, a0) +
∑

i∈{0,..|C|−1}

d(ai, ai+1) = |V |

Since there are |V | terms in

d(a|V |−1, a0) +
∑

i∈{0,..|C|−1}

d(ai, ai+1)

and each term is 1 or 2, each term must be 1. Thus. from

the construction of d, we have that {a0, a1}, {a1, a2} ,
etc, and

{
a|V |−1, a0

}
are all the edges in G and so[

a0, a1, ..., a|V |−1
]

is a Hamiltonian circuit.

Type set April 9, 2014 27

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

By the way, 19th c. mathematician William Rowan

Hamilton hoped to get rich selling a pentagonal

dodecahedron with the challenge to find a cyclic path

along the edges that reached each node. Can you find a

Hamiltonian circuit?

See

http://www.puzzlemuseum.com/month/picm02/200207icosian.htm

Type set April 9, 2014 28

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Cook’s theorem

A conjunctive normal form (CNF) propositional formula is

of the form

c0 ∧ c1 ∧ ... ∧ cn
where each ci is of the form

(ai,0 ∨ ai,1 ∨ ... ∨ ai,ki)

where each ai,j is either a variable or the negation of a

variable.

Example

(v0 ∨ v1) ∧ (¬v0 ∨ v2 ∨ ¬v3) ∧ (v0 ∨ ¬v1 ∨ ¬v2)

SAT is the problem of determining whether such a

formula is satisfiable

Cook’s theorem (Stephen Cook, 1971)

Every problem in NP is reducible to SAT

Proof: The basic idea is.

• For any problem Q in NP , there is (by definition) a

polynomial-time magically-nondeterministic algorithm

for it.

• For each input I, of size N , the algorithm will take no

more than p(N) steps where p is a polynomial.

• For each input I we can systematically construct (from

the algorithm and the number of steps it takes) a CNF

formula of polynomial size that is satisfiable iff the

algorithm results in a ‘yes’.

Type set April 9, 2014 29

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Generic

Transform
SAT

I A CNF formula {yes, no}

Description of a

nondeterministic

algorithm for Q

Q

• This gives a polynomial time reduction from Q to SAT .

Wikipedia gives more detail. See

http://en.wikipedia.org/wiki/Cook%27s_theorem .

Type set April 9, 2014 30

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

NP-Completeness

Definition: We say that a problem R is NP-complete

(NPC) iff it is in NP and every problem in NP is

reducible to R.

(Equivallenty a problem is NP-complete iff it is in NP

and is NP-hard.)

Thus Cook’s theorem says that SAT is NP-complete.

To say a problem R is NP-complete is to say

• if R is tractable then every problem in NP is tactable.

And so any NPC problem is a least tractable problem in

NP.

Summary: the following are equivalent statements

• P = NP

• all NPC problems are tractable

• at least one NPC problem is tractable

And the following are equivalent statements

• P �= NP

• at least one NPC problem is intractable

• all NPC problems are intractable

Type set April 9, 2014 31

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Implications:

• We should look for a polynomial time solution to

some NPC problem. This would prove P = NP and

immediately yield polynomial time algorithms for all

problems in NP, and

• We should try to find a nonpolynomial time lower-

bound for someNPC problem, thus proving P �= NP.

People have been trying to resolve this question since

1972 with no luck yet.

The Clay Mathematics Institute has included this question

among 7 problems for which it is willing to offer a $1

million prize. See

http://www.claymath.org/millennium/P_vs_NP/

A very practical consequence is that

• Any problem that is inNPC will not have a polynomial

time algorithm unless P = NP.

Thus if you can show a problem is in NPC then, even

if it is a new problem, you know that over 30 years of

research has failed to find a poly-time algorithm a large

number of equivalently hard problems.

Type set April 9, 2014 32

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

So how do we show that a problem is

NP-Complete?

Theorem: If Q is in NP, R is NP-Complete, and R can

be reduced to Q then Q is also NP-complete.

Proof:

• Recell that Q is NP-Complete iff every problem in NP

can be reduced to Q.

• Assume Q is in NP, R is NP-Complete, and R can

be reduced to Q

• We must show that any problem S in NP can be

reduced to Q.
∗ Since R can be reduced to Q, there is a polynomial

time f such that R(y) = Q(f(y)), for all y

∗ Consider any problem S in NP.

∗ Since R is NP-Complete, there is a polynomial

time g such that S(x) = R(g(x)), for all x

∗ Now S(x) = Q(f(g(x)), for all x.

∗ Since f and g are polynomial, so is their composi-

tion. Thus S can be reduced to Q.

MoreNP-Complete problems.

Using the last theorem and Cook’s theorem, we can

prove lots of useful problems are NP-Complete.

Example: PSAT

PSAT is in NPC since we can transform any input for

SAT to an input for PSAT by doing nothing.
Type set April 9, 2014 33

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

Example: 3SAT

The problem 3SAT is the same as SAT, but each

disjunction must have exactly 3 disjuncts:

(a0,0∨a0,1∨a0,2)∧ (a1,0∨a1,1∨a1,2)∧ ...∧ (ak,0∨ak,1∨ak,2)

We can transform any input for SAT to an input for 3SAT

(how?)

Example: Vertex cover

We can transform any input for 3SAT to an input for the

vertex cover problem

We’ll do this later.

Example: Hamiltonian circuit

We can transform any input for the vertex cover problem

to an input for the HC problem.

Non-Example: Factoring

Given an N bit number i and a number k, does i have a

factor less than k? Certainly this is in NP, but it is not

known to be in NPC.

Non-Example: Prime

Given an N bit number i, is i prime? Recently proved in

P.

Type set April 9, 2014 34

Advanced Computing Concepts Slide Set 2-3. Tractability and Intractability (C) Theodore Norvell

In a picture

SAT

3SAT

Vertex Cover3 Dimensional
Matching

Partition
Hamiltonian

Circuit
Clique

Etc. Etc.

Known

in NPC

NP
Prime Eulerian

Circuit

Known

in P

A is reducible to B
by Cook's Thm

Etc. Etc.

A B

A is reducible to B

A B

Travelling
Salesperson

Some problems in NP

Factoring

Type set April 9, 2014 35

