
Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

A Monitor package for Java

To implement true Hoare-style monitors with a Signal and

Wait discipline, I’ve created the monitor package for Java.

Threads in Java

Java provides an easy to use Thread class.

A programmer will typically extend the Thread class while

overriding the method

public void run()

with code to be executed.

For example

class Printer extends Thread {

private String message ;

public Printer(String m) { message = m ; }

public void run() {

for(int i=0 ; i<1000 ; ++i)

System.out.println(message) ; } }

To start a new thread, create an object of the class and then

call its start method.

public static void main(String[] args) {

Thread t0 = new Printer("Hi") ;

Thread t1 = new Printer("Ho") ;

t0.start() ;

t1.start() ; }

September 20, 2014 1

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Note that while the “main” thread may quickly terminate,

owing to the main function returning, the program does not

terminate until all 3 threads have terminated.

September 20, 2014 2

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Monitors

The class AbstractMonitor in package monitor implements

protected AbstractMonitor()

protected void enter()

protected void leave()

protected Condition makeCondition()

protected Condition makeCondition(Assertion prop)

protected boolean invariant()

We can extend AbstractMonitor. E.g.

class TOD extends AbstractMonitor {

private int hr = 0, min = 0, sec = 0 ;

public void set(int h, int m, int s) {

enter() ; // Obtains mutual exclusion

hr = h ; min = m ; sec = s ;

leave() ; // Releases mutual exclusion

}

...other methods...

}

September 20, 2014 3

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Invariants

An invariant can be associated with a monitor.

The invariant is tested on both enter and leave.

Add the following override to TOD.

@Override

protected boolean invariant() {

return 0 <= hr && hr < 24

&& 0 <= min && min < 60

&& 0 <= sec && sec < 60 ; }

September 20, 2014 4

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Conditions

Condition objects are created by an AbstractMonitor object

using method makeCondition()

The Condition class exports the following interface

public void await()

public void signal()

public void signalAndLeave()

public boolean empty()

public int count()

public void conditionalAwait()

public void conditionalSignal()

public void conditionalSignalAndLeave()

September 20, 2014 5

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Example

Consider a VoteMonitor, which is an N process barrier that

also allows processes to vote for a boolean value.

For space I omitted the constructor, which initializes N, and

the invariant method, which returns

0 ≤ votesFor∧0 ≤ votesAgainst∧votesFor+votesAgainst < N

public class VoteMonitor extends AbstractMonitor {

private int N ;

private int votesFor = 0, votesAgainst = 0;

private Condition electionDone=makeCondition();

// Signaled when votesFor + votesAgainst == N

...

public boolean cast(boolean vote) {

enter() ;

if(vote) votesFor++ ; else votesAgainst++ ;

if(votesFor + votesAgainst != N)

electionDone.await() ;

// Assert: votesFor+votesAgainst == N

boolean result = votesFor > votesAgainst ;

if(! electionDone.empty()) {

electionDone.signal() ; }

else {

votesFor = votesAgainst = 0 ; }

leave() ;

return result ; } }

September 20, 2014 6

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Assertions

An Assertion object represents a boolean expression that

may be evaluated at various points in time. We may use

Assertion objects to check assertions expected to be true.

Example:

class AssertionExample {

int x = 0, y=0 ;

void test() {

class MyAssertion extends Assertion {

@Override public boolean isTrue() {

return x==y ; } }

Assertion a = new MyAssertion() ;

System.out.println(a.isTrue()) ;

// Prints true.

a.check() ; // No effect.

x = 1 ;

System.out.println(a.isTrue()) ;

// Prints false.

a.check() ; // Throws an object of class Error.

}

}

Note that MyAssertion is an inner class. It is local to the

class it is declared in and thus can refer to fields x and y .

It is common to use an anonymous inner class when an

inner class is used only once, in a new.

Since MyAssertion is used only once, the lines

September 20, 2014 7

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

class MyAssertion extends Assertion {

public boolean isTrue() { return x==y ; } }

Assertion a = new MyAssertion() ;

can be replaced by the lines

Assertion a = new Assertion() {

public boolean isTrue() { return x==y ; } } ;

which creates an object of an anonymous subclass of

Assertion.

September 20, 2014 8

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Associating Assertions with Conditions

We can associate an Assertion with a Condition when it is

created.

The assertion will be checked on signal.

E.g., we can replace the declaration of electionDone in

VoteMonitor with

private Condition electionDone

= makeCondition(new Assertion() {

public boolean isTrue() {

return votedFor+votedAgainst == N ; } });

This also allows us to replace the lines

if(votedFor + votedAgainst != N)

electionDone.await() ;

with

electionDone.conditionalAwait() ;

There is also a conditionalSignal method.

And a conditionalSignalAndLeave method

September 20, 2014 9

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

public class VoteMonitor extends AbstractMonitor {

private int N ;

private int votesFor = 0, votesAgainst = 0;

private Condition electionDone

= makeCondition(new Assertion() {

public boolean isTrue() {

return votedFor+votedAgainst == N ; } });

...

public boolean cast(boolean vote) {

enter() ;

if(vote) votesFor++ ; else votesAgainst++ ;

electionDone.conditionalAwait() ;

boolean result = votesFor > votesAgainst ;

if(! electionDone.empty()) {

electionDone.signal() ; }

else {

votesFor = votesAgainst = 0 ; }

leave() ;

return result ; } }

September 20, 2014 10

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Automated assertion checking in the monitor

package:

• The invariant is checked:

∗ on enter

∗ on leave

∗ on await

∗ on conditionalAwait, if the assertion is true.

∗ on return from signal and conditionalSignal

∗ on signalAndLeave if the condition is empty

∗ on conditionalSignalAndLeave, if the condition is

empty or the assertion is false

• Assertions associated with Conditions are checked

∗ on signal

In addition, associated Assertions are tested as part of

• conditionalAwait

• conditionalSignal

• conditionalSignalAndLeave

September 20, 2014 11

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

Delegation

Since, in Java, one can not extend more than one class, it

may be inconvenient to extend AbstractMonitor.

In this case one may delegate to a Monitor instance variable.

Monitor’s constructor takes the invariant as an (optional)

argument. E.g.

class TODDelegated extends SomeClass {

private Monitor mon = new Monitor(

new Assertion() {

public boolean isTrue() {

return 0 <= hr && hr < 24

&& 0 <= min && min < 60

&& 0 <= sec && sec < 60 ; } }) ;

private int hr = 0, min = 0, sec = 0 ;

public void set(int h, int m, int s) {

mon.enter() ; // Obtains mutual exclusion

hr = h ; min = m ; sec = s ;

mon.leave() ; // Releases mutual exclusion

}

...other methods... }

Exceptions

If an exception could happen during a call to a public

method, we should be sure to leave the monitor anyway.

We can use Java’s try-finally construct to achieve this.

September 20, 2014 12

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

The finally clause will be executed regardless of how the

function invocation completes.

class someMonitor extends AbstractMonitor {

int someEntryPoint() throws SomeException {

enter() ; try {

...the workings...

return someValue ; }

finally { leave() ; } }

}

September 20, 2014 13

Concurrent Programming— Slide Set 5A. The monitors package Theodore Norvell

doWithin

AbstractMonitor supports two doWithin methods that use

try-finally to ensure that enter and leave are properly paired

class someMonitor extends AbstractMonitor {

void someOtherEntryPoint() {

doWithin(new Runnable() {

public void run() {

...the workings... } }) ; }

int someEntryPoint() throws SomeException {

return doWithin(new

RunnableWithResult<Integer>() {

public Integer run() {

...the workings...

return someValue ; } }) ; }

}

September 20, 2014 14

