
Proof-Outline Logic (Concurrent Programming

Edition)

Theodore S Norvell
Electrical and Computer Engineering

Memorial University

Draft typeset May 12, 2014

Abstract

An introduction to proof outlines, compiled as background read-
ing for Engi 8893 Concurrent Programming and Engi 9869 Advanced
Concurrent Programming.

Note on editions: This is the Concurrent Programming edition, de-
signed to support MUN courses Engi-7893 and Engi-9869. The first part of
this note –the part up to the section entitled Concurrent Programming–
also appears in an edition for MUN course Engi-6892 Algorithms: Correct-
ness and Complexity. The content is the same, but the notation is a bit
different. The notation used in this edition better matches the notation
used in Andrews’ text book [Andrews, 2000]. [For students who took Engi-
6892 in 2013 or earlier: since earlier editions of this note and the edition for
Engi-6892 I’ve made the following changes in terminology. I formerly said
that a condition was “valid” where I now say it is “universally true”. And I
formally said that a Hoare triple or a proof outline was “valid” where I now
say it is “partially correct”.]

1 Preface

This note provides background on assertions and the use of assertions in
designing correct programs.

The ideas presented are mainly due, for the sequential programming
part, to Floyd [Floyd, 1967] and Hoare [Hoare, 1969], and, for the concur-
rent programming part, to Lamport [Lamport, 1977] and Gries and Owicki

1

[Owicki and Gries, 1976b, Owicki and Gries, 1976a]. Blikle [Blikle, 1979]
presented an early version of proof-outline logic for sequential programs. An
excellent and detailed study of Owicki/Gries theory is to be found in [Feijen
and van Gasteren, 1999], where the theory is expanded from a set of rules
for checking proofs of parallel programs to a method for developing proofs
of parallel programs.

Sections 2 and 3 deal with sequential programming. As such they are
an elaboration of Hoare’s excellent ‘Axiomatic basis’ paper [Hoare, 1969]. I
suggest reading Hoare’s paper first. For sequential programs, proof-outline
logic is just like Hoare logic except that commands contain internal asser-
tions. Section 4 then extends the rules to cover concurrent programs.

Section 5 describes the syntax and semantics a bit more formally than
the preceding sections. It is entirely optional reading.

Section 6 gives some example and shows some handy tricks for showing
noninterference. Section 7 discusses global invariants, which are assertions
that are true throughout the execution of a concurrent program. It gives
a handy abbreviation that saves you from having to write global invariants
over and over, and, more importantly, concludes with an example of proving
a communication protocol. The final two sections show applications of global
invariants. Section 8 shows how introducing extra variables can simplify
proofs and Section 9 shows how to use a sort of coordinate transformation
to change the set of variables used in a program.

The programming notation that I use is based on that in Gregory An-
drews’s text [Andrews, 2000], which is based on C. I’ll make a few “improve-
ments” to Andrews’s notation. I will mention them as I go along but will
summarize them here:

• Andrews uses the Fortran/C/Java notation for assignment: v = E;. I
use the Algol/Pascal/Ada notation: v := E;.

• Andrews uses the C/Java notation for equality: E == F . I use the
mathematical notation: E = F .

• Andrews brackets assertions with “##” and the end of the line (eol).
I do this too, but as an alternative, I’ll sometimes bracket them with
“{” and “}”, which is the tradition in Hoare logic. The latter notation
is particularly useful when you don’t want to be forced to put line
breaks in the middle of a formula.

• Andrews groups commands with “{” and “}”, as in C and Java. I do
that too, but to avoid confusion with assertions, I’ll sometimes use “(”

2

and “)”. For larger examples I’ll use ##/eol for assertions with {/}
for grouping commands; for smaller examples and in the theory, I’ll
use {/} for assertions with (/) for grouping commands.

2 Conditions and assertions

2.1 Assertions

A condition is a boolean expression with free variables chosen from the
state variables of a program. For example if we have variables

int x ;
int y ;

Then the following are all examples of conditions

x < y

x = y

x+ y = 0

x ≥ 0

x ≥ 0 ∧ x+ y = 0 .

A condition that is expected to be true every time execution passes
a particular point in a program is called an assertion. In this course,
assertions are preceded by ## and are followed by an end-of-line like this:1

int x ;
int y ;
x := 5 ;
y := -5 ;
x ≥ 0 ∧ x+ y = 0
z := x+z ;

Sometimes I’ll write assertions insides curly brackets like this:

int x ; int y ; x := 5 ; y := -5 ; {x ≥ 0 ∧ x+ y = 0} z := x+y ;

1This fragment uses both the symbol := and =.This is one of those “notational im-
provements” I mentioned. I will use := for assignment and either = or == for equality
when writing pseudo-code. In C, C++, and Java, = is used for assignment and == for
equality. Andrews follows the C/C++/Java convention. If you want to be on the safe side
of any possible misunderstanding, you can use := for assignment and == for equality.

3

2.2 Assertions in C, C++, and Java

If one is programming in C or C++, then assertions may be written either
as comments or using the assert macro from the standard C library. E.g.

#include <assert.h>
...
int x ;
int y ;
x = 5 ;
y = -5 ;
assert(x >=0 && x+y == 0) ;

Assertions written using the assert macro will be evaluated at run time and
the program will come to a grinding halt, should the assertion ever evaluate
to false.2

In Java one easily create one’s own Assert class with a check method in
it.3

public class Assert {

public static void check(boolean b) {

if(!b) { throw new java.lang.AssertionError() ; }

}

}

This can be used in your code as follows:

int x ;
int y ;
x = 5 ;
y = -5 ;
Assert.check(x >=0 && x+y == 0) ;

2By using a different include file, one can, of course, make the action followed on a
false assertion be whatever you like. For example, in a desktop application, one might
cause all files to be saved and an error report to be assembled and e-mailed back to the
developers; in an embedded system, one might cause the system to go into safe mode. If
you program in C or C++, I strongly suggest redefining the assert macro in a way that
suits your application. And use it!

3As of Java 1.4, there is actually an assert keyword in Java. However I don’t recommend
its use. Assertion checking is turned off by default in most (if not all) JVMs. This can be
compared to removing the seat belts from a car’s design once it goes into production. In
my own work I use my own assertion checking class. I recommend you do the same.

4

2.2.1 Be an assertive programmer

Using assertions has several benefits.

• In the design process, they help you articulate what conditions you
expect to be true at various points in program execution.

• In testing, executable assertions can help you identify errors in your
code or in your design.

• In execution, executable assertions–combined with a recovery mechanism–
can help make your program more fault tolerant.

• Assertions provide valuable documentation. Executable assertions are
more valuable than comments, as they are more likely to be accurate.

Whether to code assertions as comments or as executable checks is a
question that depends on the local conditions of the project you are working
on. Sometimes has to be answered on a case-by-case basis. In this course
we will concentrate on the use of assertions in the design process, rather
than on their (nevertheless important) uses in testing, documentation, and
in making systems fault-tolerant. My general advice is to make assertions
executable as much as is practical.4

2.3 Substitutions

Sometimes it is useful to create a new condition by replacing all free occur-
rences of a variable x in a condition P by an expression (E). We write Px←E

4 In concurrent programming there is an additional complication in making assertions
executable, namely that they should be evaluated atomically. Consider the assertion

x = 0 ∨ y = 0

if we evaluate this in parallel with the following sequence of assignments

x := 0; y := 1;

it is possible that the assertion will evaluate to false even though there is no time at which
it is in fact false.
This problem can be solved by evaluating assertions only when the thread has exclusive

access to the data they refer to.

5

for the new condition.5 For example

(x ≥ 0 ∧ x+ y = 0)x←z is (z) ≥ 0 ∧ (z) + y = 0
(x ≥ 0 ∧ x+ y = 0)x←x+y is (x+ y) ≥ 0 ∧ (x+ y) + y = 0

(2y = 5)y←y+z is 2(y + z) = 5 .

It is useful to extend this notation to allow the simultaneous substitution
for more than one variable. For example

(x ≥ 0 ∧ x+ y = 0)x,y←z,x is (z) ≥ 0 ∧ (z) + (x) = 0

Usually we omit the parentheses in contexts where they are not required.

2.4 Propositional and predicate logic

In this section, I will review a little bit of propositional and predicate logic.
We use notations ¬ (not), = (equality), ∧ (and), ∨, (or), and ⇒ (implica-
tion). Precedence between the operators is in the same order. Some of the
laws of propositional logic that will be useful in this course are

(P ⇒ Q) = (¬P ∨Q) Material implication
(true ⇒ P) = P Identity
false ⇒ P Antidomination
P ⇒ P Reflexivity
P ⇒ true Domination
(P ⇒ (Q⇒ R)) = (P ∧Q⇒ R) Shunting
(P0⇒ Q)⇒ (P0 ∧ P1⇒ Q) Subsetting the antecedent
(P ⇒ Q ∧R) = (P ⇒ Q) ∧ (P ⇒ R) Distributivity

Also frequently useful are the one-point laws, which let you make use
information from equalities. E and F range over expressions of any type, v
is a variable.

(E = F ⇒ Pv←E) = (E = F ⇒ Pv←F)

(E = F ∧ Pv←E) = (E = F ∧ Pv←F)

To see that these are true, consider the case where E = F and then the case
where E 	= F .

For example
x = X ∧ y = Y ⇒ xy = XY

5A variety different notations are used by authors for substitution. In other courses, I
usually use P [x : E]. Here I am following Andrews’s book.

6

simplifies, using one-point (and shunting), to

x = X ∧ y = Y ⇒ XY = XY

which then simplifies to

x = X ∧ y = Y ⇒ true

which is then true.
Any condition that is true for all assignments of values to its free vari-

ables, is called a universally true formula. For example, (assuming x and
y and z are integer variables) the following are all universally true

2 + 2 = 4

x < y ∧ y < z ⇒ x < z

x+ 1 > x

However, x2+y2 = z2 is not universally true, because there is an assignment
for which it is not true; for example 32 + 42 = 62 is not true.

Whether a condition is universally true may depend on the types ascribed
to its variables. For example, if we are using Java and x has type int, then,
by the rules of the Java language, the value of x+ 1, when x is 231 − 1, is
−231; so x+ 1 > x is not universally true in that case.

Sometimes expressions are undefined, for example, supposing x and y are
rational variables, x/y is undefined when y is 0, so this raises the question of
whether 1 = x/x is universally true. We’ll say that such an expression is not
universally true. However, the expression x 	= 0 ⇒ 1 = x/x is universally
true; if we consider the case of x = 0 , we have false ⇒?, and applying the
principle of antidomination, this is true. Using ? to represent an unknown
or undefined truth value, we can fill in truth tables for the propositional
logic as follows

¬

false true

? ?

true false

∧ false ? true

false false false false

? false ? ?

true false ? true

∨ false ? true

false false ? true

? ? ? true

true true true true

⇒ false ? true

false true true true

? ? ? true

true false ? true

7

3 Sequential programming

3.1 Contracts

A specification for a component indicates the operating conditions (i.e. the
conditions under which the component is expected to operate) and the func-
tion of the component (i.e. the relationship between the components inputs
and outputs). For example we might specify a resistor by saying that the
relationship between the voltage and current across the resistor is given by

953I ≤ V ≤ 1050I ,

provided
0 ≤ V ≤ +10 .

The latter formula gives the operating conditions, the former the relation
between inputs and outputs.

In programming, we can use a pair of assertions as a specification or
“contract” for a command or subroutine. The first assertion is the so-called
precondition, it specifies the operating conditions, that is, the state of the
program when the command begins operation. The second assertion speci-
fies the state of the program when (and if) the command ends operation. For
example, the following pair of conditions specifies a command that results
in x being assigned the value 5, provided that y is initially 4:

[y = 4, x = 5]

where x and y are understood to be state variables of type int. One solution
to this particular contract is

y = 4
x := y + 1 ;
x = 5 .

Such a triple, consisting of a precondition, a command, and a postcondition
(ignoring the variable declarations), is called a Hoare triple after C.A.R.
Hoare, who introduced the idea to programming.6 Here is another solution:

y = 4

6Traditionally Hoare triples are written with the assertions in braces. So we would,
traditionally, write

{y = 4} x := y + 1 {x = 5}

I’m going to use braces sometimes and the ## convention at others.

8

x := 5 ;
x = 5 .

Here is one more:

y = 4
y := y + 1 ;
x := y ;
x = 5 .

Nothing in the contract says that y must not change!
If you do want to specify that a variable does not change, then ‘constants’

can be used. Constants are conventionally written with capital letters. The
following contract specifies that, provided y is initially less than 100, y must
not change and the final value of x must be larger than that of y:

[y < 100 ∧ y = Y, y = Y ∧ x > y]

where it is understood that x and y are state variables of type int, while Y
is a constant7 of type int.

3.2 Partial correctness

Consider a Hoare triple {P} S {Q} or equivalently

P
S
Q

We define that the triple is partially correct if and only if, for all possible
values of all constants, whenever the execution of S is started in a state

7The word ‘constant’ is the traditional term to use. In the mathematical sense, Y is
a variable. We use the term ‘constant’ to distinguish such mathematical variables from
“program variables” which refer to components of the program state. The point is that
Y can’t be changed by the execution of the program so Y represents the same value in
both the precondition and in the postcondition. Since the precondition implies y = Y and
the postcondition implies y = Y , it is clear that y has the same value in the final state as
it has in the initial state.
It is so common to use constants equated to the initial values of variables that the

following convention has evolved. The notation eo is used to refer to the value of expression
e in the original state. Thus this contract could be written as

[y < 100, y = yo ∧ x > y]

9

satisfying P , the execution of S does not crash and can only end in a state
satisfying Q.

Note that the definition of partial correctness does not require that S
should terminate. Thus the following triple is partially correct even if we
interpret x to have the type Z, that is, to range over all mathematical
integers

{true} while(x 	= 0) x := x− 1; {x = 0} .

If we consider initial states where x is positive or zero, then eventually
the while-loop will terminate and the program will halt in a state where
x = 0, satisfying the postcondition. If we start the while-loop in an initial
state where x is negative, then the while-loop will never terminate and so
execution “can only end in a state satisfying” the postcondition by virtue
of the fact it never ends at all!

We write � {P} S {Q} to mean “{P} S {Q} is partially correct”
In concurrent programming, we are often interested in processes that do

not terminate (e.g., in embedded systems) so dealing with partial correctness
is an appropriate and desirable thing to do. If termination is important, we
can deal with it as a separate concern. From here on, we won’t be worried
about any other kind of correctness, so we will just say “correct”.

3.3 Some examples of assignments and a rule

Here are some small examples of Hoare triples. In each case the variables
should be understood to be integers

{x+ 1 = y} x := x+ 1; {x = y}

Is this triple correct? (Answer for yourself before reading on...) If initially
y is x+1 and we change x to x+1, then finally both x and y will equal the
original value of x+ 1, and so they will equal each other. Yes, it is correct.

How about
{2x = 3y} x := 2x; {x = 3y}

Is this correct? Well, if initially 2x is 3y, then, after changing x to 2x, finally
x will be 3y.

These two examples suggest a general rule, which is

� {Qx←E} x := E; {Q}

When Q is the postcondition of an assignment x := E, we call Qx←E the
substituted postcondition. More generally, it is sufficient for the precon-

10

dition to imply Qx←E , so a better rule is

� {P} v := E; {Q} exactly if P ⇒ Qv←E is universally true

where v is any variable, E is any expression, and P and Q are any conditions.
Here is an example where the precondition is stronger than it needs to be:

{2x < 3y} x := 2x; {x ≤ 3y}

The substituted postcondition is (x ≤ 3y)x←2x, which is 2x ≤ 3y. By the
assignment rule, this triple is correct exactly if 2x < 3y ⇒ 2x ≤ 3x is
universally true.

There is one more aspect to assignment that should be mentioned. This
is that the expression might not always be well defined. For example, if we
divide by 0, this is an error and we should consider that if this happens the
program has crashed. Since a command that crashes is not partially correct
we should really ensure that our rule for assignments includes checking that
the expression is well defined. Let’s suppose that for each expression E there
is a condition df[E] that says that E is well-defineed, i.e. does not crash
when evaluated. For example df[x/y] might be y 	= 0. Now the improved
assignment rule is

� {P} v := E; {Q} exactly if P ⇒ Qv←E is universally true
and P ⇒ df[E] is universally true

(assignment rule)
In many cases df[E] is simply true, and so it is trivial that P ⇒ df[E] is
universally true.

This rule generalizes to simultaneous assignments to multiple variables.
For example

{x < y} x, y := y, x; {y ≤ x}

The substituted postcondition is (y ≤ x)x,y←y,x, which is x ≤ y; this is
implied (for all values of x and y) by x < y.

Here is one last example of an assignment; it will be of use later.

{y ≥ 0 ∧ x = X ∧ y = Y } z := 1;
{
y ≥ 0 ∧XY = z × xy

}

First we find the substituted precondition

y ≥ 0 ∧XY = 1× xy

which simplifies to
y ≥ 0 ∧XY = xy

This (using one-point laws) is implied by the precondition y ≥ 0 ∧ x =
X ∧ y = Y .

11

3.4 A bigger example

Here is another example. I claim that

{y ≥ 0 ∧ x = X ∧ y = Y } S
{
z = XY

}
, (1)

is correct, where

S � (z := 1;while(y > 0) T)

T � if(odd(y)) U else V

U � (z := z × x; y := y − 1;)

V � (x := x× x; y := y/2;) .

To show that this triple is correct, we’ll need to deal with constructs
other than assignments. For that we introduce a new idea: proof outlines.

3.5 Proof outlines

A proof outline is a command that is annotated with assertions. It repre-
sents the outline of a proof of the program. Figure 1 is a proof outline for
the example of the last section.

A proof outline is not a proof: it is (if correct) a summary of a proof.
This is why it is called a ‘proof outline’.

3.6 Correctness of proof outlines

We can formally define partially correct proof outlines for sequential pro-
grams as follows:
Assignment Rule: {P} v := E; {Q} is a partially correct proof outline

if

P ⇒ Qv←E is universally true and P ⇒ df[E] is universally true .

Skip Rule: {P} skip {Q} is a partially correct proof outline if

P ⇒ Q, for all values of all variables .

(Sequential) Composition Rule: {P} S {Q} T {R} is a partially
correct proof outline, provided {P} S {Q} and {Q} T {R} are both par-
tially correct proof outlines.
2-Tailed If Rule: {P} if(E) {Q0} S else {Q1} T {R} is a partially

correct proof outline, provided {Q0} S {R} and {Q1} T {R} are both

12

y ≥ 0 ∧ x = X ∧ y = Y
z := 1 ;
I : y ≥ 0 ∧XY = z × xy

while(y > 0)
XY = z × xy ∧ y > 0
{

if(odd(y))
XY = z × xy ∧ y > 0 ∧ odd(y)
{

z := z × y;
y − 1 ≥ 0 ∧XY = z × xy−1

y := y − 1;

}
else
XY = z × xy ∧ y > 0 ∧ even(y)
{

x := x× x;
even(y) ∧ y/2 ≥ 0 ∧XY = z × xy/2

y := y/2;

}

}
z = XY

Figure 1: An example proof outline.

partially correct proof outlines and that P ⇒ df[E], P ∧ E ⇒ Q0, and
P ∧ ¬E ⇒ Q1 are all universally true.
1-Tailed If Rule: {P} if(E) {Q} S {R} is a partially correct proof

outline, provided {Q} S {R} is a partially correct proof outline and that
P ⇒ df[E], P ∧E ⇒ Q, and P ∧ ¬E ⇒ R are all universally true.
Iteration Rule: {P} while(E) {Q} S {R} is a partially correct

proof outline, provided

• that P ⇒ df[E] is universally true,

• that P ∧E ⇒ Q is universally true,

• that P ∧ ¬E ⇒ R is universally true, and

13

• that {Q} S {P} is a partially correct proof outline.

By the way, the loop’s precondition, P , is called an invariant of the
loop. Loop invariants are crucial in designing and documenting loops. Note
that, provided it is true when the while command starts, the invariant will
be true at the start of each iteration and when the loop terminates. Loop
invariants allow us to analyze the effect of a loop by considering only the
effect of a single iteration.8

Parentheses Rule: {P} (S) {Q} is a partially correct proof outline,
provided {P} S {Q} is a partially correct proof outline.9

From here on we will write “correct” in place of “partially correct”, as
we won’t be concerned with any other sort of correctness.

In a proof outline, all commands will be preceded by an assertion. This
is its precondition. In the example, the precondition of y := y/2; is

even(y) ∧ y/2 ≥ 0 ∧XY = z × xy/2

and the precondition of x := x× x; is

XY = z × xy ∧ y > 0 ∧ even(y) .

Suppose {P} S {Q} is a correct proof outline. Let Ŝ be formed by delet-
ing all assertions from S or by treating them as comments. Now {P} Ŝ {Q}
is a correct Hoare triple.

8Loop invariants are closely related to global invariants, class or module invariants,
and monitor invariants that we will see later in this course. All can be considered a kind
of loop invariant.

9Remember that in larger examples, we use braces instead of parentheses.
In Figure 1 I was careful to place the assertions before the braces at the start of the

loop body and at the start of each tail of the if command. Throughout the course, I’ll
place such assertions after the brace at times, just to save some vertical space. I.e., I’ll
write

{ ## P

S }
Q

rather than
P

{ S }
Q

With the former notation, the “{ ## P” can often be conveniently placed on the same
line as an “if(E)” or a “while(E)”

14

3.7 Correctness of the example

There is a little, but not much, work left to show that the example proof
outline in Figure 1 is correct. First a recall that a boolean formula is said
to be universally true if it evaluates to true regardless of the values chosen
for its free variables (including our so-called constants).

Let’s call the loop invariant I.

I � y ≥ 0 ∧XY = z × xy

• Because of the first assignment, we must show

y ≥ 0 ∧ x = X ∧ y = Y ⇒ Iz←1

is universally true. After substitution we have

y ≥ 0 ∧ x = X ∧ y = Y ⇒ y ≥ 0 ∧XY = 1× xy

which (using a one-point law) we can easily see is universally true.

• From the rule for while-loops, we must show

I ∧ y > 0⇒ XY = z × xy ∧ y > 0

I ∧ ¬ (y > 0)⇒ z = XY

are each universally true. Both are fairly straight-forward

• From the rule for 2-tailed if commands, we must show

XY = z × xy ∧ y > 0 ∧ odd(y)⇒ XY = z × xy ∧ y > 0 ∧ odd(y) and

XY = z × xy ∧ y > 0 ∧ ¬odd(y)⇒ XY = z × xy ∧ y > 0 ∧ even(y)

are each universally true. Both are trivial.

• The four assignments in the loop body give rise to four expressions
that should be shown to be universally true:

XY = z × xy ∧ y > 0 ∧ odd(y) ⇒
(
y − 1 ≥ 0 ∧XY = z × xy−1

)
z←z×y

y − 1 ≥ 0 ∧XY = z × xy−1 ⇒ Iy←y−1

XY = z × xy ∧ y > 0 ∧ even(y) ⇒
(
even(y) ∧ y/2 ≥ 0 ∧XY = z × xy/2

)
x←x×x

even(y) ∧ y/2 ≥ 0 ∧XY = z × xy/2 ⇒ Iy←y/2

15

4 Concurrent programming

4.1 Interference

It was recognized early on that the style of reasoning shown above can be
invalid in the presence of concurrent programs sharing the same variables.
For example, if we have the program10

true

〈x := 1; 〉
x = 1
〈y := x; 〉
y > 0

and we run it concurrently with the program 〈x := x+ 1; 〉, then the proof
outline above is problematic. Consider what happens if the assignment x :=
x+ 1; is scheduled after the assignment x := 1; and before the assignment
y := x;. Then the precondition of y := x;, i.e. x = 1 is not true after the
increment happens. In a sense the program x := x+1; has “interfered with”
the state of the other program. Worse still, the assignment has interfered
with the proof of the other program, so we can no longer trust our reasoning!

Let’s consider the concurrent program above again. Our intuition is that
the concurrent assignment x := x + 1; shouldn’t invalidate the conclusion
that in the end y > 0. One way to validate this intuition is to consider all
possible interleavings11 of the assignments – in this example there are only
three possible interleavings, so this is not much work – however, we will
find that, in general, it is impractical to consider all possible interleavings
and to use sequential reasoning.

So what can we do? If we use a different proof of the sequential program,
namely

true

〈x := 1; 〉

10The angle brackets indicate ‘atomic actions’, that is commands that are executed
without interruption. We will formalize this notion later.

11An interleaving of two sequences of actions is a sequence that consists of all the actions
of the two sequences in the same relative order. For example if we have two sequences
[a0, a1] and [b0, b1], the possible interleavings are

[a0, a1, b0, b1] , [a0, b0, a1, b1] , [a0, b0, b1, a1] ,

[b0, a0, a1, b1] , [b0, a0, b1, a1] , and [b0, b1, a0, a1] .

16

x > 0
〈y := x; 〉
y > 0

then the assignment 〈x := x+ 1; 〉 can not change the condition x > 0 from
true to false. Thus no interleaving of the two programs will invalidate the
proof above. Since we don’t know when the assignment x := x + 1 will
happen, we should check that the assignment will not interfere with any of
the assertions in the longer program. That is, it will not cause them, once
made true by the first program, to become false. Formally we should check
that

� {true} 〈x := x+ 1; 〉 {true} ,

� {x > 0} 〈x := x+ 1; 〉 {x > 0} , and

� {y > 0} 〈x := x+ 1; 〉 {y > 0} .

The insight that Owicki and Gries provided is that, when the proof of a
program is not interfered with by another program, it doesn’t matter if the
state is interfered with. This allows us to still use Hoare logic and proof out-
lines, provided we are careful, even when dealing with concurrent programs
– and this is very important because, while we can often trust ourselves to
reason intuitively rather than formally about sequential programs, the same
can not be said for concurrent programs. Proof outlines provide a useful
record of all the assertions that must not be interfered with by actions of
concurrently running commands.

4.2 Rule for concurrent execution

We can extend the logic of partial correctness to include a command for
concurrent execution, by which we mean an arbitrary interleaving of the
atomic actions of two processes.12 We’ll use the notation

co S // T oc

for the concurrent composition of two commands S and T .
Suppose {PS}S{QS} and {PT}T{QT} are two proof outlines. Suppose

that a is an atomic action from {PS}S{QS} with a precondition of R, and
P is an assertion from {PT}T{QT} (possibly PT or QT , but also possibly an

12This may seem an odd definiton of concurrent, since it doesn’t suggest that two actions
might happen at the same time. However, if action ai has started already then action bj
can be started if it is independant of ai.

17

assertion embedded within command T), then a does not interfere with
P if

� {P ∧R} a {P}

Furthermore the two proof outlines do not interfere with each other if
no action of one interferes with any assertion in the other.13

Concurrent execution Rule:

{P} co {PS}S{QS} // {PT}T{QT} oc {Q}

is a (partially) correct proof outline iff

• the precondition of the co command implies the precondition of each
component, i.e.,

P ⇒ PS is universally true and

P ⇒ PT is universally true,

• the conjunction of the postconditions of its components implies the
postcondition of the co command, i.e.,

QS ∧QT ⇒ Q is universally true,

• {PS}S{QS} and {PT}T{QT} are both correct proof outlines, and

• {PS}S{QS} and {PT}T{QT} do not interfere with each other (freedom
from interference).

4.3 Awaiting

Processes can synchronize by means of an await command

〈await(E) S〉

where E is a boolean expression and S is any command14. The idea is
that the process delays until E becomes true and then the command S is
executed atomically with the evaluation of E.
Await rule: A proof outline

{P} 〈await(E) S〉 {R}

13Later, when we get to await commands, we’ll have to modify this definition a little.
14Except that await commands are not allowed inside of await commands, nor are co

commands.

18

is correct iff {P ∧E} S {R} is a correct proof outline.
Thus, in a sense, the await command causes E to become true, almost

as if by magic. For example the following correct proof outline appears to
set x to 99 without doing any real work

true
co

true
〈await(x = 99) skip; 〉
x = 99

//

true
skip
true

oc
x = 99

Of course there is no magic about it; if E is not true when the await com-
mand starts to delay, then it is up to the other process to eventually make
E true; if that doesn’t happen, the await will delay the process forever. Re-
member that we are dealing only with partial correctness here, so a correct
proof outline may still embody a program that will never terminate.

As abbreviations we have:

• 〈S〉 abbreviates 〈await(true) S〉, and

• 〈await(E)〉 abbreviates 〈await(E) skip〉

The derived rules are that {P} 〈S〉 {R} is a correct proof outline if
{P} S {R} is a correct proof outline, and that {P} 〈await(E)〉 {R} is a
correct proof outline if

P ∧E ⇒ R is universally true.

To account for the atomicity of the await commands, we modify the
definition of ‘proof outlines do not interfere with each other’ to exclude
assertions that are contained within await commands. I.e. two proof outlines
do not interfere with each other exactly if no action of one interferes
with any assertion in the other not contained in an await command.

19

5 A formalization of proof-outline logic

The next two subsections are optional reading. I wrote themmainly to clarify
my own understanding. I include them as they may also help clarify yours.
If you skip them, proceed to the important caveat in subsection 5.3.

5.1 Syntax

Let’s take V to be a set of variables, T to be set of types, E to be a set of
expressions, and P to be a set of conditions. The syntax for assignments A,
commands S, blocks B and proof outlines O is given by:

A → V := E; Assignment
A → V,A,E Multiple assignment
S → A; Assignment command
S → skip Skip command
S → (B) Block command
S → if(E) {P} S else {P} S 2-tailed if command
S → if(E) {P} S 1-tailed if command
S → while(E) {P} S While command
S → co {P} B {P} // {P} B {P} oc Concurrent command
S → 〈await(E) B〉 Await command
B → T V ; B Variable declaration
B → S {P} B Sequential composition
B → S Simple block
O → {P} B {P} Proof outline

There are a number of restrictions not indicated by the syntax

• In an assignment command, the type of the ith variable must match
the type of the ith expression, for each i.

• The expressions in await, if, and while commands must be boolean.

• The scope of a variable is the block that follows its declaration.

• Await commands may not occur within await commands, directly or
indirectly.

• The choice between 1- and 2-tailed if commands leads to a syntactic
ambiguity. As we read from left to right, each ‘else’ is considered

20

attached to the nearest as-yet-umatched ‘if’ to its left to which it
could be attached. For example

if(E0) {P0} if(E1) {P1} S0 else {P2} S1

is treated as a 2-tailed if command within a 1-tailed if command.

A few other comments are in order.

• I only include the binary case for the concurrent command. The gen-
eralization to more processes is straight-forward.

• I omit the abbreviations for await commands. These are 〈B〉 abbrevi-
ates 〈await(true) B〉 and 〈await(P)〉 abbreviates 〈await(P) skip〉.

• I use round parentheses to turn blocks into commands rather than the
curly braces used by Andrews and in my examples. This is so that the
curly braces can be saved to delimit assertions. See next point.

• In this section I use {P} to indicate an assertion, rather than the ##P
notation used in other sections and in Andrew’s text.

• In practice a fragment “{P} (” (or “
##P
{

”) may be written as

“({P}” (or “{##P”) . In Andrews’s notation, the latter often for-
mats a bit better. In dealing with the theory, the former is easier to
cope with.

• I haven’t gone in to detail about the set of expressions. I will assume
though that, for each expression E, there is a condition df[E] that
expresses the weakest condition for E to be well-defined, i.e. not to
crash. For example if dividing by 0 is considered to be a cause for
crashing then df[x/y] would be y 	= 0. If a is an array of size n then
df[a[i]] would be 0 ≤ i < n.

5.2 Semantics

5.2.1 Underlying logic

We’ll assume there is an underlying logic with judgements of the form � P
where P is a predicate logic formula. So, for example,

� x+ y = y + x

means that “x+ y = y+x” is a theorem in the underlying logic, i.e. that it
is universally true and can be proved so in the underlying logic.

21

5.2.2 Rules

We put a turnstile (�) in front of a proof outline to indicate that it is
(partially) correct.

The following inference rules allow us to conclude that certain proof
outlines are correct. Each inference rule

A0
A1
...
An

C

is interpreted as follows: If the list of antecedents A on the top of the line is
true, then the consequent C, below the line is true.15

� P ⇒ df[e0] ∧ df[e1] ∧ · · · ∧ df[en−1]
� P ⇒ Qv0,v1,...,vn−1←e0,e1,...,en−1

� {P} v0, v1, ..., vn−1 := e0, e1, ..., en−1; {Q}
(Assign)

� P ⇒ Q

� {P} skip {Q}
(Skip)

� P ⇒ df[E]
� {P ∧E} B {Q}

� {P} 〈await(E) B〉 {Q}
(Await)

� {Q0} S0 {R}
� {Q1} S1 {R}
� P ⇒ df[E]
� P ∧E ⇒ Q0
� P ∧ ¬E ⇒ Q1

� {P} if(E) {Q0} S0 else {Q0} S1 {R}
(If 2)

� {Q} S {R}
� P ⇒ df[E]
� P ∧E ⇒ Q
� P ∧ ¬E ⇒ R

� {P} if(E) {Q} S {R}
(If 1)

� {Q} S {P}
� P ⇒ df[E]
� P ∧E ⇒ Q
� P ∧ ¬E ⇒ R

� {P} while(E) {Q} S {R}
(While)

� {P} S {Q}
� {Q} B {R}

� {P} S {Q} B {R}
(Seq)

15Those who have studied Hoare’s logic will note the absence of the rule(s) of conse-
quence. Consequence is incorporated as needed in the various rules.

22

� {P0} B0 {Q0}
� {P1} B1 {Q1}
� P ⇒ P0
� P ⇒ P1
� Q0 ∧Q1 ⇒ Q
{P0} B0 {Q0} does not interfere with {P1} B1 {Q1}

� {P} co {P0} B0 {Q0} // {P1} B1 {Q1} oc {Q}
(Co)

� {P} B {Q}
v is not free in P
v is not free in Q

� {P} T v ; B {Q}
(Decl)

� {P} B {Q}

� {P} (B) {Q}
(Paren)

5.3 A caveat

These rules assume a certain granularity of execution that may not be realis-
tic. You can see that x := E; and 〈x := E; 〉 mean exactly the same thing, so
we are assuming that assignment commands are executed atomically. Sim-
ilarly the guard expressions in if and while commands are assumed to be
evaluated atomically. These assumptions are not actually realistic. Lan-
guages such as C, C++, and Java have carefully defined rules defining the
meaning of reads from and writes to shared variables; these are the so-called
‘memory models’ for the languages.

6 Simple examples

6.1 A note on showing triples involving assignments

To show noninterference, one has to show that atomic actions do not interfere
with assertions. Typically the atomic actions are assignments, so let’s look
a bit at showing Hoare triples that involve assignments to be correct.

Generally we need to show

{P} 〈x := E; 〉 {Q}

is correct. Some observations:

• The Hoare-triple is correct if and only if

P ⇒ Qx←E

is universally true. We call Qx←E the substituted postcondition.
So we must show that the precondition implies the substituted pre-
condition.

23

• If P is universally false,16 then the Hoare triple is correct. This follows
immediately from the previous point. Usually when a precondition is
universally false, it is because you have come across some form of
mutual exclusion.

• If the precondition is a conjunction, for example P is (P0 ∧ P1 ∧ P2),
it is safe to use only some of the conjuncts of a precondition. For
example, it would be sufficient to show

� P0⇒ Qx←E .

We call this subsetting the precondition.

• Extending this a bit further, it is safe to replace the precondition P by
any condition R that is implied by the P . At the extreme (taking R
as true), it suffices to ignore the precondition altogether and simply
show Qx←E is universally true.

• We can show the postcondition in parts. For example if Q is Q0∧Q1
then we can separately show

� P ⇒ Q0x←E , and

� P ⇒ Q1x←E

are correct. We call this proof by parts.

When showing non-interference, the postcondition is also part of the
precondition. We need to show

� {Q ∧ P} 〈x := E; 〉 {Q}

where Q is some assertion made in one component, 〈x := E; 〉 is an atomic
action from another component, and P is the precondition of 〈x := E; 〉.

• If x does not occur in Q, then the Hoare triple is correct. This is
because Qx←E is then simply Q and we have to show

Q ∧ P ⇒ Q

universally true, which it trivially is. We call this situation disjoint
variables.

16 I.e. ¬P is universally true.

24

The idea of proof by parts applies to outlines in general, not just to
assignment commands. If we want to show

{P} S {Q0 ∧Q1}

to be correct, it suffices to show that both

{P} S {Q0} and

{P} S {Q1}

are correct.

6.2 An example with no interference

Consider the following program that increments x and y in parallel

x = X ∧ y = Y
co

x = X
〈x := x+ 1; 〉
x = X + 1

//

y = Y
〈y := y + 1; 〉
y = Y + 1

oc
x = X + 1 ∧ y = Y + 1

To show this proof outline correct we must check the following

• The precondition of the co command implies the preconditions of each

component of the co command.

— x = X ∧ y = Y ⇒ x = X

This is universally true from propositional calculus.

— x = X ∧ y = Y ⇒ y = Y

Similarly.

• The conjunction of the postconditions of its components implies the

postcondition of the co command .

25

The postconditions of the components are respectively x = X +1 and
y = Y + 1. The conjunction of them is the postcondition of the co
command itself.

• Local correctness. We need to show that each component is itself a
correct proof outline. By application of the assignment rule. We have
that

{x = X} x := x+ 1; {x = X + 1}

is correct. Similarly for

{y = Y } y := y + 1; {y = Y + 1}

• Freedom from interference. We can consider each pair consisting of an
assertion in one component and an atomic action in the other. There
are four such pairs

{x = X} 〈y := y + 1; 〉

{x = X + 1} 〈y := y + 1; 〉

{y = Y } 〈x := x+ 1; 〉

{y = Y + 1} 〈x := x+ 1; 〉

To check the first we must check that

{x = X ∧ y = Y } 〈y := y + 1; 〉 {x = X}

is correct. From the assignment rule, we must show

x = X ∧ y = Y ⇒ (x = X)y←y+1

to be universally true; it simplifies to

x = X ∧ y = Y ⇒ x = X

which is universally true by propositional calculus. In the terminology
above, we have “disjoint variables”.

The other three action/assertion pairs are each free of interference by
reason of disjoint variables.

26

6.3 An example with interference

Consider the following proof outline

x = X
co

x = X
〈x := x+ 2; 〉
x = x+ 2

//

x = X
〈x := x+ 3; 〉
x = X + 3

oc
x = X + 2 ∧ x = X + 3

This has the rather startling postcondition that x is both X+2 and that
it is X + 3 !

What is wrong? Let’s check everything

• The precondition of the co command implies the precondition of each

component. As they are the same, the implication is trivial.

• The conjunction of the postconditions of its components implies the

postcondition of the co command. As they are the same, this implica-
tion is also trivial.

• Local correctness. Each component is a correct proof outline.

• Freedom from interference. There are four assertion/action pairs to
check

{x = X} 〈x := x+ 3; 〉

{x = x+ 2} 〈x := x+ 3; 〉

{x = X} 〈x := x+ 2; 〉

{x = X + 3} 〈x := x+ 2; 〉

For the first we must show that

{x = X} 〈x := x+ 3; 〉 {x = X}

is correct. But it is not. Thus there is interference. In fact every pair
exhibits interference.

27

6.4 Fixing the last example.

Looking at the code for the last example, we would expect the postcondition
to be x = X+5. Let’s see how we can prove that. We’ll reason operationally:
Initially x = X is true, but while the first thread is waiting to execute its
command, the command from the second thread may execute, changing x
to X + 3. Thus either x = X or x = X + 3 could be true. Similarly, before
the command in the second component is waiting to execute, the state could
be either x = X or x = X + 2 (at least). Let’s try these as preconditions;
we get

x = X
co

x = X ∨ x = X + 3
〈x := x+ 2; 〉
?

//

x = X ∨ x = X + 2
〈x := x+ 3; 〉
?

oc
x = X + 5

From the preconditions and the assignments, we can see that after the
first command, the state could be either x = X + 2 or x = X + 5 and after
the second the state could be either x = X + 3 or x = X + 5. So we can
complete the proof outline:

x = X
co

x = X ∨ x = X + 3
〈x := x+ 2; 〉
x = X + 2 ∨ x = X + 5

//

x = X ∨ x = X + 2
〈x := x+ 3; 〉
x = X + 3 ∨ x = X + 5

oc
x = X + 5

28

Now is this proof outline correct? We must check:

• The precondition of the co command implies the precondition of each

component. These are true by propositional reasoning as

P ⇒ P ∨Q

• The conjunction of the postconditions of the components implies the

postcondition of the co command. We must check whether

(x = X + 2 ∨ x = X + 5) ∧ (x = X + 3 ∨ x = X + 5)⇒ x = X + 5

is universally true. We have

(x = X + 2 ∨ x = X + 5) ∧ (x = X + 3 ∨ x = X + 5)

=Distributivity

(x = X + 2 ∧ x = X + 3) ∨ (x = X + 2 ∧ x = X + 5)

∨ (x = X + 5 ∧ x = X + 3) ∨ (x = X + 5 ∧ x = X + 5)

=Simplification

false ∨ false ∨ false ∨ x = X + 5

=Identity

x = X + 5

• Local correctness. We need to check the correctness of each component.
I.e. the correctness of

{x = X ∨ x = X + 3} 〈x := x+ 2; 〉 {x = X + 2 ∨ x = X + 5} , and

{x = X ∨ x = X + 2} 〈x := x+ 3; 〉 {x = X + 3 ∨ x = X + 5} .

For the first we substitute in the postcondition to get

x+ 2 = X + 2 ∨ x+ 2 = X + 5

which after a bit of algebraic simplification, is equivalent to the precon-
dition x = X ∨ x = X + 3. Similarly for the second after substitution
we get

x+ 3 = X + 3 ∨ x+ 3 = X + 5 ,

which simplifies to the precondition.

29

• Freedom from interference. There are four assertion/action pairs to
check

{x = X ∨ x = X + 3} 〈x := x+ 3; 〉

{x = X + 2 ∨ x = X + 5} 〈x := x+ 3; 〉

{x = X ∨ x = X + 2} 〈x := x+ 2; 〉

{x = X + 3 ∨ x = X + 5} 〈x := x+ 2; 〉

— For the first we need to check the correctness of

{(x = X ∨ x = X + 3) ∧ (x = X ∨ x = X + 2)}

〈x := x+ 3; 〉

{x = X ∨ x = X + 3}

The precondition simplifies to x = X. The substituted postcon-
dition is x + 3 = X ∨ x + 3 = X + 3. So we need to check
that

x = X ⇒ x+ 3 = X ∨ x+ 3 = X + 3

is universally true, which, by a one-point law, it is.

— For the second, we need to check

{(x = X + 2 ∨ x = X + 5) ∧ (x = X ∨ x = X + 2)}

〈x := x+ 3; 〉

{x = X + 2 ∨ x = X + 5}

The precondition simplifies to x = X + 2. The substituted post-
condition is x + 3 = X + 2 ∨ x+ 3 = X + 5 which simplifies to
x = X − 1 ∨ x = X + 2. So we need to check

x = X + 2⇒ x = X − 1 ∨ x = X + 2

— The last two are essentially the same as the first two.

7 Global invariants

7.1 Global invariants

The purpose of the next example is to illustrate the important technique of
using “global invariants”. A condition G is a global invariant with respect
to a co command if

30

• it is implied by the precondition of the co command,

• each atomic action in the co command preserves the invariant in the
sense that

{G ∧ Pa} a {G}

is correct for each atomic action a in the co command, where Pa is the
precondition of a.

Once we’ve shown a condition to be a global invariant, we can assume it
as a precondition in showing the local correctness of any assertion and when
showing interference freedom. Each assertion P can be split into the global
part and a local part:

P = G ∧ PL ,

where G is the conjunction of all global invariants. For local correctness we
need to show outlines of the form

{G ∧ PL} a {G ∧QL}

correct, where PL is the local part of the precondition and QL is the local
part of the postcondition. Since we’ve already shown G is a global invariant,
all that remains is to show (using “proof by parts”)

{G ∧ PL} a {QL}

correct. For freedom from interference, we need to show outlines of the form

{QL ∧G ∧ PL} a {G ∧QL}

to be correct, where PL is the local part of the precondition of an action a
and QL is the local part of some assertion from another component. If we’ve
already shown that G is a global invariant, it only remains to show (again,
using “proof by parts”) that

{QL ∧G ∧ PL} a {QL}

is correct.
We can save a lot of writing by noting the relevant global invariants

between the co command and its precondition. For example,

P
Global Inv: G
co

31

P0
〈S〉
Q0

//

P1
〈T 〉
Q1

oc
Q

abbreviates

P
co

G ∧ P0
〈S〉
G ∧Q0

//

G ∧ P1
〈T 〉
G ∧Q1

oc
Q

The next section illustrates the use of global invariants, of await com-
mands for coordinating cooperating processes, and of mutual exclusion.

7.2 A client and a server

In this example, we analyze a shared-variable client-server system. The
client sends a message in shared variable x. The server computes a function,
f , of x and returns it via the same variable. The server looks like this

while(q 	= 2) {

〈await (q = 1)〉
〈x, q := f(x), 0; 〉 }

The client computes a function g(x) and sends the result to the server,
getting back the result f(g(x)). The client ends after N iterations. The
client looks like this

32

x = X
int q := 0 , i := 0
x = X ∧ q = 0 ∧ i = 0
Global Inv: 0 ≤ q ≤ 2
Global Inv: i ≥ 0
## Global Inv: q 	= 1⇒ x = hi(X)
Global Inv: q = 1⇒ x = g(hi−1(X)) ∧ i > 0
co

while(q 	= 2) {

〈await (q = 1)〉
q = 1
〈x, q := f(x), 0; 〉 }

//

i ≤ N ∧ q = 0
while(i < N) {

i < N ∧ q = 0
〈x, q, i := g(x), 1, i+ 1; 〉
i ≤ N
〈await (q = 0)〉

q = 0 ∧ i = N
〈q := 2; 〉
q = 2 ∧ i = N

oc
x = hN(X)

Figure 2: A client and server system.

int i := 0 ;
while(i < N) {

〈x, q, i := g(x), 1, i+ 1; 〉
〈await (q = 0)〉 }

〈q := 2; 〉

Initially we will have x = X and q = 0. Let h = (f◦g) be the composition
of g and f . Then the parallel composition of the client and server should
compute x = hN (X).

We need to come up with a proof outline for the composition. It is a

33

good idea to keep the annotation as minimal as possible, that is to resist

the temptation to write down everything we might be able to prove about the

state at each point. Rather we only make note of those facts required to

achieve our goal: namely, to have a correct proof outline with the stated pre-

and postconditions..

Figure 2 on page 33 shows the composition.
In the proof outline in Figure 2, I’ve used the abbreviation mentioned at

the end of the previous section. Rather than repeating the global invariants
in nine different places, I’ve listed them just once at the start of the co
command. These invariants are to be thought of as being conjoined with
each assertion within the co command. Thus the full precondition of the
command 〈x, q := f(x), 0; 〉 is

q = 1∧0 ≤ q ≤ 2∧i ≥ 0∧
(
q 	= 1⇒ x = hi(X)

)
∧
(
q = 1⇒ x = g(hi−1(X))

)

which simplifies to

q = 1 ∧ i ≥ 0 ∧ x = g(hi−1(X))

Furthermore, I haven’t written assertions that are simply true. So the pre-
condition of 〈await (q = 1)〉 is simply the conjunction of the four global
invariants.

I made a slight change to the client algorithm in that I expanded the
scope of the variable i so that it can appear in the assertions both sides of
the //.

To show that the proof outline is correct, we need to show that each
assertion is justified.

• x = X ∧ q = 0 ∧ i = 0. This follows from the initializations.

• The preconditions of the components. We need to check that each
global invariant follows from

x = X ∧ q = 0 ∧ i = 0

and also that i ≤ N ∧ q = 0 does. These five implications are all
trivially universally true.

• The postconditions of the components imply the overall postcondition.

Combining the postcondition q = 2 ∧ i = N with the global invariant
q 	= 1⇒ x = hi(X), we get x = hN(X).

34

• Global invariants. We show that the claimed global invariants are
preserved by each atomic action.

— 0 ≤ q ≤ 2. The assignment actions we have to worry about are

〈x, q := f(x), 0; 〉 ,

〈x, q, i := g(x), 1, i+ 1; 〉 , and

〈q := 2; 〉

The substituted postconditions are 0 ≤ 0 ≤ 2, 0 ≤ 1 ≤ 2, and
0 ≤ 2 ≤ 2 which are all trivially true.

— i ≥ 0. By disjoint variables we only need to show

{i ≥ 0} 〈x, q, i := g(x), 1, i+ 1; 〉 {i ≥ 0}

which is implied by

i ≥ 0⇒ i+ 1 ≥ 0

which is universally true.17

— q 	= 1⇒ x = hi(X).

∗ The assignment

〈x, q, i := g(x), 1, i+ 1; 〉

sets q to 1. Doing the substitution we get

1 	= 1⇒ ...

which we can see is true without considering what is in the
... , nor considering the preconditions.

∗ For the assignment

〈x, q := f(x), 0; 〉

the substituted postcondition simplifies to f(x) = hi(X).
The precondition includes the conjuncts

q = 1 ∧
(
q = 1⇒ x = g(hi−1(X)) ∧ i > 0

)
,

17Well maybe and maybe not. If our ints are true integers, there is no issue. If ints
are bounded in range, it’s not universally true. We could use a larger subset of the
precondition and show

i ≥ 0 ∧ i < N ⇒ i+ 1 ≥ 0

Given that N is an int, this will be universally trie for bounded ints..

35

which imply x = g(hi−1(X)) ∧ i > 0. Now apply f to both
sides and we get f(x) = f(g(hi−1(x)), which is the same as
f(x) = hi(X).

∗ For the assignment 〈q := 2; 〉, the substituted postcondition
simplifies to x = hi(X). The preconditions include

q = 0 ∧
(
q 	= 1⇒ x = hi(X)

)
,

which clearly imply x = hi(x).

— q = 1⇒ x = g(hi−1(X)) ∧ i > 0. The assignments

〈x, q := f(x), 0; 〉 and

〈q := 2; 〉

both give a substituted postcondition of the form

false⇒ ...

which is trivially true. The interesting action is 〈x, q, i := g(x), 1, i+ 1; 〉.
The substituted postcondition simplifies to

g(x) = g(hi(X)) ∧ i+ 1 > 0 ,

which is implied by the following subset of the precondition:

q = 0 ∧
(
q 	= 1⇒ x = hi(X)

)
∧ i ≥ 0 .

• Local correctness. Showing the that the global invariants really are
invariant is part of local correctness. What remains is to show the
local parts of each assertion follow from the preceding atomic actions.
This is straight forward in each case. It suffices to show

� {true} 〈await (q = 1)〉 {q = 1} ,

� q = 0 ∧ i = 0⇒ 0 ≤ i ≤ N ∧ q = 0 ,

� 0 ≤ i ≤ N ∧ q = 0 ∧ i < N ⇒ 0 ≤ i < N ∧ q = 0 ,

� {0 ≤ i < N} 〈x, q, i := g(x), 1, i+ 1; 〉 {0 ≤ i ≤ N} ,

� {0 ≤ i ≤ N} 〈await (q = 0)〉 {0 ≤ i ≤ N ∧ q = 0} ,

� 0 ≤ i ≤ N ∧ q = 0 ∧ ¬ (i < N)⇒ q = 0 ∧ i = N , and

� {i = N} 〈q := 2; 〉 {q = 2 ∧ i = N}

In each case the reasoning is straight-forward.

36

• Freedom from interference. Showing the global invariants really are
invariant is part of showing freedom from interference. What remains
is to show that the following pairs don’t interfere

q = 1 〈x, q, i := g(x), 1, i+ 1; 〉

q = 1 〈q := 2; 〉

q = 0 〈x, q := f(x), 0; 〉

q = 0 〈x, q := f(x), 0; 〉

I’ve omitted all conjuncts that have to do with i because they are free
from interference by reason of “disjoint variables”. Now let’s deal with
the pairs. In each case we actually have mutual exclusion. For exam-
ple, in the first, the precondition of the action includes the conjunct
q = 0. Now, subsetting the precondition, it suffices to show

� {q = 1 ∧ q = 0} 〈x, q, i := g(x), 1, i+ 1; 〉 {q = 1}

We need do no more work than to observe that the precondition is
false. This technique works in all four cases.

Three of the pairs (all but the second) can also be shown in another
easy way. Consider the first again. The substituted postcondition is
1 = 1 which is true. We need not even look at the precondition. We
have

� {true} 〈x, q, i := g(x), 1, i+ 1; 〉 {q = 1}

This is an extreme case of subsetting the precondition.

This concludes the example.

8 Ghost Variables

A technique that is often useful and occasionally indispensable is that of
ghost variables. The idea is to introduce extra variables that are useful for
creating a correct proof outline, but that are not needed in the actual im-
plementation. These variables are called ‘ghost variables.’ (Some writers
call them ‘auxiliary variables,’ ‘thought variables,’ or ‘dummy variables.’)

Here is a simple example. Consider the algorithm

x = 0
co

〈 x := x+ 1; 〉

37

//

〈 x := x+ 1; 〉

oc
x = 2

How can we complete the outline? If we put in a precondition for each
component of x = 0, like this

x = 0
co

x = 0
〈 x := x+ 1; 〉

//

x = 0
〈 x := x+ 1; 〉

oc
x = 2

there is interference. Weakening the preconditions to try to avoid interfer-
ence, like this

x = 0
co

x = 0 ∨ x = 1
〈 x := x+ 1; 〉

//

x = 0 ∨ x = 1
〈 x := x+ 1; 〉

oc
x = 2

doesn’t work; there is still interference. We know that once the other process
has incremented x, it won’t do it again, but the definition of interference
only considers the actions of the other process, not the sequence or frequency
that they might happen in.

We can introduce ghost variables a and b to track the local changes to
x; a represents how much the first component has incremented x, while
b represents how much the second component has incremented x. Thus
x = a+ b, at all times. To emphasize that a and b are ghost variables, we
put their declarations in comments marked by “#”.

38

x = 0
int a := 0
int b := 0
x = 0 ∧ a = 0 ∧ b = 0
Global invariant: x = a+ b
co

a = 0
〈 x := x+ 1; a := 1; 〉
a = 1

//

b = 0
〈 x := x+ 1; b := 1; 〉
b = 1

oc
x = 2

By disjoint variables, there is no interference. We need only show that each
action is correct locally and that each maintains the global invariant. The
final assertion that x = 2 follows from the global invariant together with the
assertions a = 1 and b = 1.

9 Data refinement

In engineering, we often replace an abstract part of a design by something
more concrete that refines it. For example, an early version of the design
of a building might specify a column capable of transmitting a given force.
Later in the design process, that column might be replaced by a set of smaller
columns that together do the same job.

In programming we can replace one set of variables with another set
of variables. This process is known as data refinement. Data refinement
allows us to go from abstract solutions that are easily seen to be correct,
but that may be difficult to implement, to concrete solutions that are easy
to implement, but whose correctness may be less obvious. It is a useful
technique in concurrent programming and also in sequential programming.

Data refinement is best done in three stages:

Augment First, we introduce the new set of variables, linked to the other
variables by an invariant.

39

Transform Second, we transform the program until (some of) the original
variables are no longer needed.

Diminish Finally, we eliminate any variables that are no longer needed, or
demote them to the status of ghost variables.

As an example, consider a solution to the mutual exclusion problem. We
start with a program that ensures that only one of commands A, B, and
C are being executed at any one time. We assume that A, B, and C don’t
change variables a, b, or c.

int a := 0, b := 0, c := 0 ;
a = 0 ∧ b = 0 ∧ c = 0
Global invariant: 0 ≤ a, b, c ≤ 1
Global invariant: a+ b+ c < 2
co

while(true) {

〈await(a+ b+ c = 0) a := 1; 〉
A
〈a := 0; 〉 }

//

while(true) {

〈await(a+ b+ c = 0) b := 1; 〉
B
〈b := 0; 〉 }

//

while(true) {

〈await(a+ b+ c = 0) c := 1; 〉
C
〈c := 0; 〉 }

oc

The problem with this program is that the await commands must read
three variables at once, which might be difficult to engineer.
Augmenting: Let’s introduce a new variable s, tied to a, b, and c by a

global invariant s = a+ b+ c.

int a := 0, b := 0, c := 0 ;
int s := 0 ;

40

a = 0 ∧ b = 0 ∧ c = 0 ∧ s = 0
Global invariant: 0 ≤ a, b, c ≤ 1
Global invariant: a+ b+ c < 2
Global invariant: s = a+ b+ c
co

while(true) {

〈await(a+ b+ c = 0) a := 1; s := 1; 〉
A
〈a := 0; s := 0; 〉 }

//

while(true) {

〈await(a+ b+ c = 0) b := 1; s := 1; 〉
B
〈b := 0; s := 0; 〉 }

//

while(true) {

〈await(a+ b+ c = 0) c := 1; s := 1; 〉
C
〈c := 0; s := 0; 〉 }

oc

Transforming: Now, by the global invariant s = a+b+c, we can replace
the expression a+ b+ c with s anywhere it appears:

int a := 0, b := 0, c := 0 ;
int s := 0 ;
a = 0 ∧ b = 0 ∧ c = 0 ∧ s = 0
Global invariant: 0 ≤ a, b, c ≤ 1
Global invariant: s < 2
Global invariant: s = a+ b+ c
co

while(true) {

〈await(s = 0) a := 1; s := 1; 〉
A
〈a := 0; s := 0; 〉 }

//

while(true) {

〈await(s = 0) b := 1; s := 1; 〉

41

B
〈b := 0; s := 0; 〉 }

//

while(true) {

〈await(s = 0) c := 1; s := 1; 〉
C
〈c := 0; s := 0; 〉 }

oc

Diminishing: At this point, variables a, b, and c are not used in the
algorithm; we can demote a, b, and c to the status of ghosts, or eliminate
them altogether.

int s := 0 ;
s = 0
Global invariant: s < 2
co

while(true) {

〈await(s = 0) s := 1; 〉
A
〈s := 0; 〉 }

//

while(true) {

〈await(s = 0) s := 1; 〉
B
〈s := 0; 〉 }

//

while(true) {

〈await(s = 0) s := 1; 〉
C
〈s := 0; 〉 }

oc

The command 〈await(s = 0) s := 1; 〉 can easily be implemented with
the test-and-set instruction found on many computers.

42

References

[Andrews, 2000] Gregory R. Andrews. Foundations of Multithreaded, Par-

allel, and distributed programming. Addison Wesley Longman, 2000.

[Blikle, 1979] Andrzej J. Blikle. Assertion programming. In J. Bečvář, edi-
tor, Mathematical Foundations of Computer Science 1979, number 74 in
Lecture Notes in Computer Science, pages 26—42, 1979.

[Feijen and van Gasteren, 1999] W. H. J. Feijen and A. J. M. van Gasteren.
On a Method of Multiprogramming. Springer-Verlag, 1999.

[Floyd, 1967] Robert Floyd. Assigning meanings to programs. In Proceed-

ings of Symposia in Applied Mathematics, Volume XIX, 1967.

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576—580, 583, 1969.

[Lamport, 1977] L. Lamport. Proving the correctness of multiprocess pro-
grams. Transactions on Software Engineering, SE-3(2):125—143, March
1977.

[Owicki and Gries, 1976a] Susan S. Owicki and David Gries. An axiomatic
proof technique for parallel programs i. Acta Informatica, 6:319—340, 1976.

[Owicki and Gries, 1976b] Susan S. Owicki and David Gries. Verifying prop-
erties of parallel programs: An axiomatic approach. Communications of

the ACM, 19(5):279—285, 1976.

43

