
1

Model-view-controller

An architecture for UI

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 2

The flow of information (idealized)

O
S

Application

Controller

Model

View

0 Event 1 Changes

2 State

3 Pixels

Flow of information

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 3

Responsibilities

  Model: Holds state information.
  It models the user’s conception of what it is that

they are manipulating or viewing.
  Should align with the user’s mental model.

  View: Presents a visualization of the models
state.
  Views are usually stateless, but might include

“view state” such as zoom level, scroll position,
selection or highlighting, caret position.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 4

Responsibilities

  Controller: Interprets UI events (mouse
events, keyboard events, screen touches,
etc.)
  Turns UI events into changes to the model (and

sometimes view state).

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 5

MVC Encourages

  Separation of presentation from
representation.

  Separation of view from control.
  Allows these components to be independently

extended and, perhaps, reused.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 6

The flow of information (idealized)

O
S

Application

Controller

Model

View

0 Event 1 Changes

2 State

3 Pixels

Flow of information

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 7

Flow of information

  Often the flow is more complicated because
1.  The underlying GUI system associates events

with view objects.
  E.g. in AWT/Swing. Events are routed through the GUI

component the user directs them at.

2.  The controller may need to know the model’s
state

3.  Some events affect only the view and so should
not go through the model.

  E.g. Scrolling, cursor position, selection.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 8

The flow of information (more
realistic)

Controller

Model

View

0 Event

1 Changes to model state

2 State
3 Pixels

User

 Event
Changes to view
state

State

(push)
(push)

(pull)

(push)

(pull)

  The View uses the Controller as a strategy to
help it deal with input events

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 9

Strategy

Controller

View

0.0 Event
(push)

0.0.0 Changes to view
state (push)

0 Event

  For
reusability,
they usually
know each
other only
via
interfaces.

Messages

  The Controller observes the Model so that it
is aware of relevant changes to state.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 10

Observer

Controller

Model

0.0.1 Changes to model state

 0.0.1.0.0 get state

0.0.1.0 update

  The View also observes the Model so that it
is aware of relevant changes to state.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 11

Observer

Controller

Model

View

0.0.1 Changes to model state

0.0.1.1 update

0.0.1.1.0 get state

  The composite pattern is often used in any of
the three parts. The model may use Façade.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 12

Composite and Façade

  Controllers and models are often state
machines and may use the state pattern.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 13

State pattern

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 14

Advantages

  Clean separation of presentation (view) from
domain modelling (model).

  Clean synchronization. The observer pattern
helps keep all views and controllers in sync
with the data.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 15

Advantages

  Separation of view from control.
  The view is typically platform dependent. And

events that come to it are typically defined by the
platform (e.g. Swing).

  By separating the controller you can reuse the
controller independently of the view.

  You may want to reuse the view independently of
control. Consider an HTML view widget that you
can reuse in a browser and a WYSIWYG editor.

Case study: The Rat Race game.

  Model keeps a map of a maze, with a cheese
and a rat.
  The model’s interface is in terms of “world

coordinates”
  View draws the maze, cheese, and rat.

  The world—view transformation is a secret of the
view.

  The view must then translate mouse events to
world coordinates.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 16

Case study: The Rat Race game.

  Controller
  Forwards mouse events from the View to the

Model.
  Sends periodic “pulse” events to the model so that

it is animated.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 17

Model and view: Observer

  The model and view relate by the observer
pattern

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 18

Controller and View: Strategy/Listener

  The controller listens to the view for events
and propagates them to the model.

  It also produces pulse events, on its own.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 19

What’s missing

  In this case, there was no need to have the
controller observe the model

  And there is no need for the controller to
send messages to the view (after registering
as a listener.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 20

Is the controller needed?
  In simple cases the controller is just

forwarding information from the view to the
model. So is the controller needed?
  If the view just sent change messages directly to

the model, it would have two responsibilities
(display and control), which makes it more
complicated.

  Also the view would be more tightly bound to the
model, which makes it less reusable.

  We might not want one controller per view.
  Independent testability.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 21

Sources and further reading

  Martin Fowler has an interesting article on
styles of UI architecture
  http://martinfowler.com/eaaDev/uiArchs.html

  Head-First Design Patterns by Freeman,
Robson, Bates, and Sierra has a good
chapter on MVC

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 22

Variations and alternatives
  Trygve Reenskaug and James O. Coplien

  have an interesting article on what they call DCI
(Domain, Context, Interaction). This is not so much on
UI design as a challenge to a lot of (bad) OO design.

  http://www.artima.com/articles/dci_vision.html

  Mike Potel describes the Model-View-Presenter
  http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

  Martin Fowler on Presentation Models
  http://martinfowler.com/eaaDev/PresentationModel.html

  MF on Passive View and Supervising Controller
  http://martinfowler.com/eaaDev/PassiveScreen.html
  http://martinfowler.com/eaaDev/SupervisingPresenter.html

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 23

