
1

Agile Design Principles:
The Liskov Substitution
Principle

Based on Chapter 10 of Robert C. Martin, Agile
Software Development: Principles, Patterns, and
Practices, Prentice Hall, 2003 and on Barbara
Liskov and Jeannette Wing, “A behavioral notion
of subtyping”, ACM Transactions on
Programming Languages and Systems
(TOPLAS), vol. 16, #6, 1994.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 2

The Liskov Substitution Principle (LSP)

!  “If S is a declared subtype of T, objects of
type S should behave as objects of type T
are expected to behave, if they are treated as
objects of type T”

!  Note that the LSP is all about expected
behaviour of objects. One can only follow the
LSP if one is clear about what the expected
behaviour of objects is.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 3

subtypes and instances

!  For Java S is a declared subtype of T if
"  S is T,
"  S implements or extends T, or
"  S implements or extends a type that implements

or extends T, and so on
!  S is a direct subtype of T if

"  S extends or implements T

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 4

subtypes and instances

!  An object is a direct instance of a type T
"  if it is created by a “new T()” expression

!  An object is an instance of T
"  if it is a direct instance of a declared subtype of T.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 5

The Liskov Substitution Principle (LSP)

!  “If S is a declared subtype of T, objects of
type S should behave as objects of type T
are expected to behave, if they are treated as
objects of type T”

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 6

Example of the LSP

void someClientCode(Bag t)
 {

Assertion.check(t.isEmpty());
t.put(new Range(0,N)) ;
while(!t.empty()) {

Range r = (Range) t.take() ;
if(r.size() > 2) {
 int m = part(r) ;
 t.put(new Range(r.low(), m)) ;
 t.put(new Range(m, r.high())) ;
}

}
}

"  Clearly the designer has
some expectations about
how an instance of Bag
will behave.

"  Let S be any declared
subtype of Bag .

"  If we pass in a direct
instance of S, this code
should still work.

"  The expectations we
have for instances of Bag
should hold for instances
of S.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 7

Expectations about behaviour

!  Behavioural specification
"  The behavioural specification of a class explains

the “allowable behaviours” of the instances of a
class.

!  S is a behavioural subtype of T if
"  an instance of type S behaves only as allowed of

type T objects
!  The LSP then says

“declared subtypes should be behavioural
subtypes”

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 8

Expectations about behaviour

!  So where do these expectations about
behaviour live?

!  In most language only a part of the
expectations can be encoded in the language
(for example types of parameters and results)

!  The rest of our expectations have to be
expressed in the documentation.

!  [Time for an example.]

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 9

Bags and Stacks

the Bag class
"  State: a bag (i.e. multiset) of Objects b
"  isEmpty() : boolean

!  Postcondition: Returns true if and only if b is empty.

"  take() : Object
!  Precondition: ! isEmpty()
!  Postcondition: result is an arbitrary member of b. The final

value of b is the initial value with the result removed.
"  put(ob : Object)

!  Precondition: true
!  Postcondition: The final value of b is its initial value with ob

added.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 10

Bags and Stacks

the Stack class
"  State: a sequence of Objects s
"  isEmpty() : boolean

!  Precondition: true
!  Postcondition: returns true if and only if s is empty

"  take() : Object
!  Precondition: ! isEmpty()
!  Postcondition: result is the first item of s. The final value

of s is the initial value with the first item removed.
"  put(ob : Object)

!  Precondition: true
!  Postcondition: The final value of s is its initial value with

ob prepended.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 11

Bags and Stacks
!  Stacks are more constrained than Bags.
!  A Stack object could be used where a Bag

object is expected without violating our
expectations of how a bag should behave.

!  Thus Stack is a behavioural subtype of Bag.
!  By the LSP, it is reasonable that Stack

should be a declared subtype of Bag.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 12

Expectations about behaviour

!  [Now where were we?]
!  So where do these expectations about

behaviour live?
!  They have to come (in part) from the

documentation.
!  Such expectations can not come from the

code, as
"  method implementations may be abstract
"  even if not abstract, method implementations can

be overridden

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 13

The “counterfeit” test.

!  Here is a way to think about behavioural subtypes:
"  Suppose I promise to deliver you an object of class T, but

instead I give you an object x of class S.
"  You can subject x to any series of method calls you like

(chosen from T’s signature).
"  If x behaves in a way that is not expected of a T object,

then you know it is a counterfeit, x has failed the test.
"  If all S objects always pass every counterfeit test, then S is

a behavioural subtype of T.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 14

Your turn

!  the Square class
"  state: x, y, size
"  getX() returns x
"  getY() returns y
"  getWidth() returns size
"  getHeight() returns size

!  the Rectangle class
"  state: x, y, width, height
"  getX() returns x
"  getY() returns y
"  getWidth() returns width
"  getHeight() returns height

Is Square a behavioural subtype of Rectangle?

Is Rectangle a behavioural subtype of Square?

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 15

Your turn

!  the MutSquare class
"  state: x, y, size
"  getX() returns x
"  getY() returns y
"  getWidth() returns size
"  getHeight() returns size
"  setWidth(int w) size := w
"  setHeight(int h) size := h

!  the MutRectangle class
"  state: x, y, width, height
"  getX() returns x
"  getY() returns y
"  getWidth() returns width
"  getHeight() returns height
"  setWidth(int w) width := w
"  setHeight(int h) height := h

Is MutSquare a behavioural subtype of Square?

Is Rectangle a behavioural subtype of MutRectangle?

Is MutSquare a behavioural subtype of MutRectangle?

Is MutRectangle a behavioural subtype of MutSquare?

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 16

LSP and syntactic interfaces

!  As we’ve seen. Semantic interfaces for
subtypes can be more specific compared to
the supertype.

!  The same applies to syntactic interfaces (in
many languages). Consider two Java
classes:

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 17

LSP and syntactic interfaces

class T {
Object a() { … }

}

class S extends T {

@Override String a() { … } √
}

!  This is allowed in Java.
"  More specific classes may have more specific

return types
"  This is called “covariance”

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 18

LSP and syntactic interfaces

!  The same applies to exceptions
class T {

void b() throws Throwable {… }
}
class S extends T {

@Override void b() throws IOException { …} √
}
class U extends S {

@Override void b() { …} √
}
"  Every exception declared for the subtype’s method should

be a subtype of some exception declared for the
supertype’s method.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 19

LSP and syntactic interfaces

!  Logically it “could” be allowed for parameters
to be “contravariant”

class T {
void c(String s) { … }

}
class S extends T {

@Override void c(Object s) { … } X
}

!  However this is actually not allowed (in Java),
as it would complicate the overloading rules

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 20

LSP and semantic interfaces
!  Is this an LSP violation:

 class Buffer<T> {
 protected T[] a = new T[10] ;
 protected int s = 0, h = 0 ;
 public void add(T x) {
 if(s == 10) { --s ; h = (h+1)%10 ; }
 ++s ; a[(h+s) % 10] = x ; } … }
 class SafeBuffer<T> extends Buffer<T> {
 @Override public void add(T x) {
 if(s == 10) throw new AssertionError() ;
 ++s ; a[(h+s) % 10] = x ; } … }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 21

LSP and semantic interfaces

!  My answer: You can not tell.
!  Nothing describes how Buffers are expected

to behave.
!  Let’s document Buffer in two ways.

Depending on the documentation, there
either is of is not an LSP violation.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 22

LSP and semantic interfaces

!  LSP violation:
 class Buffer<T> {
 …
 /** Expected Behaviour:
 * Adds a new item to the buffer, deleting
 * the head if space has run out. */
 public void add(T x) { … }
 … }

!  The behaviour of SaferBuffer is inconsistent
with this expected behaviour.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 23

LSP and semantic interfaces

!  No LSP violation:
 class Buffer<T> {
 …
 /** Expected Behaviour:
 * If there is space, adds an new item to the
 * queue. Otherwise anything could happen. */
 public void add(T x) {… }
 … }

!  The coded behaviour of SaferBuffer is
consistent with this specification.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 24

Document twice

!  Any concrete method that may be overridden
should be documented twice:
"  The “Expected Behaviour” documents what the

client can expect from all instances (direct or
indirect) of the class.

"  The “Direct Behaviour” documents what the client
can expect from direct instance of the class
!  or from instances of subclasses that do not override the

method.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 25

Document twice
!  This is the no-violation version.

 class Buffer<T> {
 …
 /** Expected Behaviour:
 * If there is space, adds an new item to the
 * queue. Otherwise anything could happen.
 * Direct Behaviour:
 * Adds a new item to the buffer, deleting
 * the head if space has run out. */
 public void add(T x) { … }
 … }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 26

Document twice
!  Rewritten with pre- & postconditions

 class Buffer<T> {
 /** Conceptual state: a sequence q. */
 /** Expected Behaviour:
 * pre: q.size < 10
 * post: The final value of q is the initial value
 * of q except with x tacked on the right end.
 *

!  (continued on next slide)

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 27

Document twice
!  (continued from last slide

 class Buffer<T> {
 /* ….
 * Direct Behaviour:
 * pre: true
 * post: The final value of q is the initial value
 * of q except with x tacked on the right end.
 * and the first item removed in the case
 * that the initial value of q had size 10. */
 public void add(T x) { … }
 … }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 28

Document twice

!  Abstract methods:
"  Only need Expected Behaviours.

!  Final methods (methods that can’t be
overridden)
"  Only need Direct Behaviours.

!  Otherwise if the Direct Behaviour is
undocumented, it is considered equal to the
Expected Behaviour.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 29

Refinement

!  A specification X refines a specification Y iff
X is at least as constraining as Y.

!  I.e. iff all behaviours accepted by X are also
accepted by Y

!  Example
"  X: If at least 2 engines are working, the plane can

maintain an altitude of at least 10,000m.
"  Y: If at least 3 engines are working, the plane can

maintain an altitude of at least 5,000.
"  X refines Y

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 30

Refinement

!  A specification X refines a specification Y iff
X is at least as constraining as Y.

!  I.e. iff all behaviours accepted by X are also
accepted by Y

!  Example
"  X: pre: a is positive and < 1,000,000
 post: result is the square root of a to 4 place
"  Y: pre: a is positive and < 500,000
 post: result is the square root of a to 3 places

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 31

Refinement and classes

!  The following refinements should hold.
"  The source code of T should refine the direct

behaviour of T.
"  The direct behaviour T should refine the expected

behaviour T.
"  If S is a declared subtype of T, the expected

behaviour of S should refine the expected
behaviour of T.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 32

Some cases where the LSP is difficult

!  Like a healthy diet the LSP is obviously good
for you, but it can be tempting to cheat a little.

!  Consider a class
public class Point2D {
 protected double x ;
 protected double y ;
 … }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 33

Some cases where the LSP is difficult

!  Consider Java’s toString method (inherited
from Object)

class Point2D { …
 /** Return a string representation of the point.
 * Postcondition: result is a string of the form
 * (xrep, yrep)
 * where xrep is a string representing the x value and
 * yrep is a string representing the y value */
 @Override public String toString() {
 return “(” + Double.toString(x) + “, ”
 + Double.toString(y) + “)” ; }
… }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 34

Some cases where the LSP is difficult

!  And Java’s “equals” method.
class Point2D { …
 /** Indicate whether two points are equal.
 * Returns true iff the x and y values are equal. */
 @Override public boolean equals(Object ob) {
 if(ob instanceof Point2D) {
 Point2D that = (Point2D) ob ;
 return this.x == that.x && this.y == that.y ; }
 else return false ; }
… }

!  So far so good.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 35

Some cases where the LSP is difficult

!  Now consider extending Point2D to Point3D
public class Point3D extends Point2D {
 protected double z ;
… }

!  We define toString as
@Override public String toString() {
 return “(” + Double.toString(x) + “, ”
 + Double.toString(y) + “, ”
 + Double.toString(z) + “)” ; }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 36

Some cases where the LSP is difficult

!  Consider:
void printPoint(Point2D p) {
 p.setX(1.0) ; p.setY(2.0) ;
 System.out.println(p.toString()) ; }

!  The behaviour will not be as expected if a
Point3D is passed in.

!  Surely there is no problem with our code
though!

!  The problem is with our expectations.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 37

Two solutions
1.  Lower expectations

/** Return a string representation of the point.
 * Postcondition: result is a string indicating at least
 * the x and y values. */
 @Override public String toString() {…as on slide 14… }

2.  Prevent overrides
!  It would be poor practice to prevent an override of

toString(), so I use another name.
/** Return a string representation of the point.
 * Postcondition: … as on slide 14…*/
public final String toString2D() {… as on slide 14 … }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 38

What about equals?

!  Naturally, equals is also overridden in
Point3D.

@Override public boolean equals(Object ob) {
 if(ob instanceof Point3D) {
 Point3D that = (Point3D) ob ;
 return this.z == that.z && super.equals(that) ; }
 else return super.equals(ob) ; }
!  (By the way, the reason for not just returning false,

when the other object is not a Point3D, is that “equals”
should be symmetric when neither object is null. I.e.

p2.equals(p3) == p3.equals(p2))

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 39

What about equals?

!  So the code
void thisOrThat(Point2D p, Point2D q) {
 p.setX(x0) ; p.setY(y0) ;
 q.setX(x1) ; q.setY(y1) ;
 if(p.equals(q)) { …do this… } else { …do that… } }

may not behave according to our expectations.
(Consider the case where x0 == x1, y0 == y1,
and p.z != q.z.)

!  Again we have violated the LSP.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 40

Two Solutions
1.  Reduce Expectations.

!  We should reword the documentation of equals
for Point2D to be more flexible

!  /** Do two Point2D objects compare equal by the
standard of their least common ancestor class?
<p> At this level the standard is equality of the x
and y values.*/

2.  Prevent overrides
"  We wouldn’t want to prevent overrides of equals.

We are better off providing a new name
/** Are points equal as 2D points? */
public final boolean equals2D(Point2D that) {
 return this.x==that.x && this.y==that.y ; }

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 41

Lesson 0

!  Every class represents 2 specifications
"  One specifies the behaviour of its direct instances

!  And this can be reverse engineered from the code.
"  One specifies the behaviour of its instances

!  And this can only be deduced from its documentation.

!  It is important to document the behaviour that
can be expected of all instances.

!  It is less important to document the behaviour
that can be expected of direct instances.

!  However sometimes it is useful to do both.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 42

Lesson 1

!  When documenting methods that may be
overridden,

!  one must be careful to document the method
in a way that will make sense for all potential
overrides of the function.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 43

Lesson 2

!  One should document any restrictions on
how the method may be overridden.

!  For example consider the documentation of
“equals” in Object. It consists almost entirely
of restrictions on how the method may be
overridden and thus it describes what the
clients may expect.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 44

Documentation of Object.equals(Object)
!  Indicates whether some other object is "equal to" this one.
!  The equals method implements an equivalence relation on non-null

object references:
"  It is reflexive: for any non-null reference value x, x.equals(x) should return

true.
"  It is symmetric: for any non-null reference values x and y, x.equals(y)

should return true if and only if y.equals(x) returns true.
"  It is transitive: for any non-null reference values x, y, and z, if x.equals(y)

returns true and y.equals(z) returns true, then x.equals(z) should return
true.

"  It is consistent: for any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in equals comparisons on the objects
is modified.

"  For any non-null reference value x, x.equals(null) should return false.
!  The equals method for class Object implements the most discriminating

possible equivalence relation on objects; that is, for any non-null
reference values x and y, this method returns true if and only if x and y
refer to the same object (x == y has the value true).

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 45

Lesson 3

!  It is particularly important to carefully and precisely
document methods that may be overridden

!  because one can not deduce the intended
specification from the code.
"  For example, consider the implementation of equals in

Object
"  public boolean equals(Object ob) {
"  return this == ob ; }

"  compared to the documentation on the previous slide.

!  There may not even be any code.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 46

In Summary

!  The Liskov Substitution Principle
"  demands that subtyping (extends and

implements, in Java) really lives up to its “is a”
billing.

"  prevents breaking client code when objects of a
declared subtype are passed to it.

"  is thus good practice.
"  can not be practiced without careful and precise

documentation of object behaviour.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 47

By the way

!  Martin’s description is pithier:
“Subtypes must be substitutable for their base types”

!  But, I have no idea what this means.
!  For example, if S is a subtype of T and I have a

statement
if(x instanceof T) doThis() ; else doThat() ;

it would be a mistake to replace T with S.
And in the statement

T x = new T() ;
it would definitely be a mistake to replace the first T with S,

and it could be a mistake to replace the second with S.

Challenge

!  There is still a problem with the equals
methods on points.

!  They violate transitivity
!  We could have

"  p3a.equals(p3b) == false but
"  (p3a.equals(p2) && p2.equals(p3b)) == true

!  My challenge to you: Find a set of contracts
and implementations that truly satisfy the
LSP.

© 2007—9 T. S. Norvell Engineering 5895 Memorial University
Liskov Substitution Principle

Slide 48

