
Software Design Slide Set 1 Theodore Norvell

“Components” – Hardware analogy

Consider a PC.

Consists of mechanical and electronic components (drives,

boards, etc.)

held together by standard interfaces (e.g. PCI bus).

Boards consist of ICs conforming to standard interfaces.

ICs often consist of numerous standard cells.

Each standard cell consists of transistors.

We find a hierarchy of large component composed of smaller

components.

January 28, 2013 1

Software Design Slide Set 1 Theodore Norvell

Components are units of

• Sale

• Reusability

• Maintenance

• Documentation

• Responsibility

• Change

• Sharing

• Design

January 28, 2013 2

Software Design Slide Set 1 Theodore Norvell

An “Interface”

...is a set of assumptions that the “clients” of a component

may make about how to “use” the component.

Consider a particular IC – a 7400 TTL in a DIP package,

which is a ‘quad NAND-gate’.

Aspects of its interface

• Physically it has 14 pins in precise physical positions.

• Pin 7 is ground. Pin 14 is 5VCC.

• Voltage levels are as defined in the TTL standard.

• Pins 3, 6, 8, 11 are outputs.

• All other pins are inputs.

In a sense the above are “syntactic” aspects of the interface.

January 28, 2013 3

Software Design Slide Set 1 Theodore Norvell

Syntactic Interface and Semantic

Interface

So far all aspects of the interface are shared by other ICs.

One more requirement:

The output on pin 3 is (after a given maximum delay) the

NAND of the inputs on pins 1 and 2. And likewise for pins 6,

4, & 5, pins 8, 9, & 10, and pins 11, 12, & 13.

This defines the “semantics” of the interface and

distinguishes the 7400 from e.g. the 7408 – “AND”.

Syntax — form.

Semantics — meaning.

The use of a part with the wrong syntactic interface can be

detected with a minimum of intelligence.

• E.g. The part won’t fit. Two outputs connected together.

Voltage levels are incompatible.

Detecting the use of a part with the wrong semantic

interface requires an understanding of the system and some

intelligence.

• To tell if a 7408 is used where a 7400 should be requires

thinking about the meaning and intended function

January 28, 2013 4

Software Design Slide Set 1 Theodore Norvell

Implementation

Sticking with the IC example:

The Interface does not describe:

• Whether it was designed with VHDL, Verilog, or etc.

• Whether the IC contains Bipolar or field effect transistors

— except indirectly as this affects voltage levels, current

drain, and other observable quantities.

• How many transistors it has.

• Etc.

These do not affect the suitability of the IC for its purpose

and thus are not considered part of the interface.

They are considered matters of implementation.

Separating matters of interface from matters of

implementation is a key concept in (software) engineering.

The interface abstracts what the client needs to know to use

the component.

January 28, 2013 5

Software Design Slide Set 1 Theodore Norvell

Syntax, Semantics and Implementa-

tion in Software

Syntactic interface

class Stack {

public Stack()

public boolean empty()

public void put(int i)

public int get() }

Syntactic + Semantic Interface

class Stack {

/* Create a stack object, initially empty */

public Stack()

/* true if there is nothing in the stack, false otherwise */

public boolean empty()

/* Add an integer to the top of the stack */

public void put(int i)

/* If the stack in not empty, remove and return the integer

most recently put on the stack, but not yet removed. */

public int get() }

Syntactic interface + Implementation

class Stack {

private ArrayList<Integer> contents ;

public Stack() {

January 28, 2013 6

Software Design Slide Set 1 Theodore Norvell

contents = new ArrayList<Integer>() ; }

public boolean empty() {

return contents.size() == 0 ; }

public void put(int i) {

contents.add(i) ; }

public int get() {

return contents.remove(contents.size() - 1) ; }

January 28, 2013 7

Software Design Slide Set 1 Theodore Norvell

Components in Software

Various entities may serve as components.

• Source files

• Variables

• Statements

• Subroutines (procedures, “functions”, methods, opera-

tions)

• Classes / Types / Interfaces

• Modules / Packages / Libraries

• Subsystems

• Programs

• Resources (e.g. icons and other data)

Note components are directly created by the software

designer.

(Some writers use the term “module” instead.)

(Some writers use the term “component” slightly

differently.)

(UML uses the word “component” slightly differently.)

January 28, 2013 8

Software Design Slide Set 1 Theodore Norvell

Components have Run-Time In-

stances

Compile time Run Time

Programs Processes

Classes Objects

Variables Locations

Subroutines Invocations
Don’t confuse “run-time” with “compile-time”.

January 28, 2013 9

Software Design Slide Set 1 Theodore Norvell

Components form a “containment”

Hierarchy

Many components are “containers” for other components.

For example:

• Programs contain subsystems or packages

• Subsystems contain packages

• Packages contain other packages, classes, types, vari-

ables, subroutines

• Classes contain variables (members), subroutines (meth-

ods), & other classes

• Subroutines contain variables and (depending on lan-

guage) other subroutines

Packages exist primarily to group together related

components.

Is this hierarchy a tree?

Often the same component will be included in multiple

programs – sharing.

But generally speaking the hierachy is a tree.

January 28, 2013 10

Software Design Slide Set 1 Theodore Norvell

Levels of Design

Architectural level

• the system is decomosed into subsystems and subsystems

into packages

• relationships between subsystems (or between packages)

are defined

Package level

• Packages are decomposed into classes.

• Relationships between classes are defined

• Class interfaces are defined.

• (UML is particularly good at this level)

Class level

• Classes are implemented with fields and subroutines

Subroutine level

• Subroutines are implemented using statements

January 28, 2013 11

Software Design Slide Set 1 Theodore Norvell

An example Hierarchy (Next few

slides)

Architectural Level

Example program: The Teaching Machine TSN/MPBL.

About 500 classes.

Default

Ut ilities

SubWindowPkg

DisplayManager

VirtualMachine
Subsys

C++ Subsys

Interfaces

Backtrack

All depend
on Ut ilities

The Subsystems of the Teaching Machine.

Arrows show dependency.

A – – –> B means A depends on B.

January 28, 2013 12

Software Design Slide Set 1 Theodore Norvell

Evaluator VirtualMachine

The Virtual Machine Subsystem has 2 packages.

January 28, 2013 13

Software Design Slide Set 1 Theodore Norvell

Package Level (virtualMachine package)

StackRegion HeapRegion

ExpressionEvlauationFunctionEvaluation

Evaluation Memory

VMState

0..*0..* 11

MemRegion

Store

11

**

Some of the Classes within the VirtualMachine package.

C —� P means C is a specialization of P. I.e. C inherits

from P.

W ♦—> P means every W object has some P objects.

January 28, 2013 14

Software Design Slide Set 1 Theodore Norvell

Class Level ("Store" class)

Store

topOfStatic : int

bottomOfStatic : int

topOfStack : int

bottomOfStack : int

topOfScratch : int

bottomOfScratch : int

topOfHeap : int

bottomOfHeap : int

topLevelData : BTVector

mem : Memory

bsearch()

getHighestLevelDatum()

searchAncestors()

chasePointerPrime()

dumpDatum()

Store()

getDatum()

addDatum()

removeDatum()

showing variables (attributes / fields / data members) and

subroutines (operations / methods / function members).

Only the names of subroutines are shown, not the signa-

tures.

January 28, 2013 15

