
1

Design by Contract

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Contracts

  Alice (client) hires Bob (server) to fix her car.
  They make a contract.

  Alice agrees to give Bob $100 in advance
  Bob agrees that when he is done, the car will be in

good working order

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Contracts

Obligation Benefit

Alice
(client)

Must pay $100 Has working car

Bob
(server)

Must fix car Has $100 to buy
materials

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Contracts in programming

  Consider a method tan to compute the tangent of an
angle between 0 and 89 degrees.

  Alice will write the client.
  Bob will implement tan.
  Contract

  Syntactic signature: double tan(double x)
  Alice agrees to send, as argument, a value between 0 and

89.
  Bob agrees that the result will be equal to the tangent to at

least three decimal places.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

Contracts in programming
Obligation Benefit

Alice
(client)

Must supply an
argument in
range [0,89]

Result equals
the tan of the
argument to 3
decimal places

Bob
(implementer)

Must ensure the
result equals
the tan of the
argument to 3
decimal places

Argument in
range [0,89]

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Contracts in programming

From the point of view of the implementer:
  the clients obligation is what is required.
  the implementer’s obligation is what the

implementation ensures.
  We document procedures as follows

/**
* requires boolean expression
* ensures boolean expression
*/

“requires clause” -- also called
“precondition”

“ensures clause” – also called
“postcondition”

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

Contracts in programming

  For example:
class DegMath {

/** requires 0 <= x && x <= 89
* ensures result == tan(x) to three decimal places,
* where tan is the mathematical tangent function in
* terms of degrees. */
static double tan(double x)

}

We use “result” to represent the
result of an invocation.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

If the client breaks the contract

  Given this contract, the client can not make
any assumptions about what a call such as

DegMath.tan(90.0) or DegMath.tan(-1.0)

 might do.
  The client is obligated to ensure that the

expression in the requires clause is true at
the start of the invocation.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

If the client respects the contract

  For the implementation to be correct, the
implementer must ensure that

DegMath.tan(25)

 equals the mathematically correct value to 3
decimal places.

  The implementer is obligated to ensure that
the “postcondition” is true, but only in those
cases where the “precondition” is true.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

Final values

  The requires clause refers to the values of
expressions at the time start of the invocation.

  In the ensures clause, we must often refer to both
the initial values of expressions and the final values
of expressions.

  We use the convention that
expression'

 means the value of the expression at the end of the
invocation. Often the expression is a variable.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Final values

  Example
class Point {

double x, y ;

/** requires true
* modifies x, y
* ensures x’==0.0 && y’==0.0
Point() { … }

/** requires true
* modifies x, y
* ensures x’ == x + deltaX && y’ == y + deltaY
*/
void move(double deltaX, double deltaY) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Omitting the requires clause

  In this example, there is no obligation on the caller
beyond the syntactic signature. We can omit the
requires clauses

class Point {
double x, y ;

/** modifies x, y
* ensures x’==0.0 && y’==0.0
Point() { … }

/** modifies x, y
* ensures x’ == x + deltaX && y’ == y + deltaY
*/
void move(double deltaX, double deltaY) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Framing

  The modifies clause is used to indicate which
variables may be changed by a method.

class Point {
double x, y ;

/** modifies x
* ensures x’ == x + deltaX
*/
void moveLeft(double deltaX) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Example

  Partitioning a list
/** requires a != null and a.length > 0
* modifies a[*]
* ensures a[*]’ is a permutation of a[*] and
* 0 <= result and result < a.length and
* (for all i in {0,1,…,a.length-1}
* (i < result implies a[i]’ <= a[result]’) and
* (i > result implies a[i]’ >= a[result]’))
**/
int partition(double[] a)

Further reading

  The paper that introduced the term “design
by contract” was

Meyer, Bertrand. "Applying 'design by contract'." Computer
25, no. 10 (1992): 40-51.

  The ideas date back to the late 60s and 70s.
For example, the Euclid programming
language, designed in 1977, had support for
pre- and postconditions.

  Meyer’s paper was important for applying the
ideas to object-oriented programming.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

