Design by Contract

Contracts

Alice (client) hires Bob (server) to fix her car.

They make a contract.
o Alice agrees to give Bob $100 in advance

o Bob agrees that when he is done, the car will be In
good working order

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Contracts

Obligation Benefit
Alice Must pay $100 | Has working car
(client)
Bob Must fix car Has $100 to buy
(Server) materials

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Contracts in programming

Consider a method tan to compute the tangent of an
angle between 0 and 89 degrees.

Alice will write the client.
Bob will implement tan.

Contract

o Syntactic signature: double tan(double x)

o Alice agrees to send, as argument, a value between 0 and
89.

o Bob agrees that the result will be equal to the tangent to at
least three decimal places.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Contracts in programming

Obligation Benefit
Alice Must supply an |Result equals
(client) argument in the tan of the

range [0,89] argument to 3
decimal places

Bob Must ensure the | Argument in
(implementer) | result equals range [0,89]
the tan of the
argument to 3
decimal places

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

Contracts in programming

From the point of view of the implementer:
the clients obligation is what is required.

the implementer’s obligation is what the
Implementation ensures.

We document procedures as follows
[** L “requires clause” -- also called

_ _ “precondition”
* requires
* ensures-hoolean expression

¥/ \ensures clause” — also called

“postcondition”

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Contracts in programming

We use “result” to represent the
result of an invocation.

For example:

class DegMath {
[** requires 0 <= x'&& x <=389
* ensure= tan(x) to three decimal places,
* where tan is the mathematical tangent function in
* terms of degrees. */
static double tan(double x)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

If the client breaks the contract

Given this contract, the client can not make

any assumptions about what a call such as
DegMath.tan(90.0) or DegMath.tan(-1.0)

might do.

The client is obligated to ensure that the
expression in the requires clause is true at
the start of the invocation.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

If the client respects the contract

For the implementation to be correct, the

implementer must ensure that
DegMath.tan(25)

equals the mathematically correct value to 3
decimal places.

The implementer is obligated to ensure that
the “postcondition” is true, but only in those
cases where the “precondition” is true.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

Final values

The requires clause refers to the values of
expressions at the time start of the invocation.

In the ensures clause, we must often refer to both
the initial values of expressions and the final values
of expressions.

We use the convention that
expression’

means the value of the expression at the end of the
invocation. Often the expression is a variable.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

Final values

Example

class Point {
double x, y ;

[** requires true

* modifies x, y

* ensures x'==0.0 && y’==0.0
Point() { ... }

[** requires true

* modifies x, y

* ensures X' == x + deltaX && y’ ==y + delta¥
*/

void move(double deltaX, double deltaY) {...}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Omitting the requires clause

In this example, there is no obligation on the caller
beyond the syntactic signature. We can omit the
requires clauses

class Point {
double x, y ;

/** modifies x, y
* ensures x'==0.0 && y’==0.0
Point() { ... }

/** modifies x, y
* ensures X' == x + deltaX && y’ ==y + delta¥

*/
void move(double deltaX, double deltaY) {...}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Framing

The modifies clause is used to indicate which
variables may be changed by a method.

class Point {
double x, y ;

/** modifies x

* ensures X' == x + deltaX

*/

void moveleft(double deltaX) {...}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Example

Partitioning a list
/** requires a != null and a.length > 0
* modifies a[*]
* ensures a[*] is a permutation of a[*] and
* 0 <= result and result < a.length and
*(foralliin{0,1,...,a.length-1}
* (i < result implies a[i]’ <= a[result]’) and
* (i > result implies a[i]’ >= a[result]’))
ok
int partition(double[] a)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Further reading

The paper that introduced the term “design
by contract” was

Meyer, Bertrand. "Applying 'design by contract'." Computer
25, no. 10 (1992): 40-51.

The ideas date back to the late 60s and 70s.
For example, the Euclid programming
language, designed in 1977, had support for
pre- and postconditions.

Meyer's paper was important for applying the
ideas to object-oriented programming.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

