Animation with Timers

A single threaded approach

Using threads has a down side.
o Thread safety has to be ensured.
o Deadlock has to be avoided

Using timer objects is an alternative.

A timer object is an object that periodically
messages a command object.

These messages are on the GUI event
thread so multithreading is not an issue

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 2

The “simple time animation” example

The timer sends events to a “sprite” object
which updates its state.

The timer also sends repaint messages to the
display system.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 3

The action based animation example

Here the “sprites™ are passive objects that
can paint them selves and be repositioned.
The behaviour is factored out into Action
objects.

An ActionPerformer object encapsulates the
Timer and sends “tick” messages to an
Action object.

Composite actions can be formed from a list
of individual actions.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 4

‘ ActionPerformers

-ActionPerformer

+makeReady(aa : AnimatnAction)

CompositeAction

MoveSpriteAction

javax.swing.
Timer

© 2003 T. S. Notvell

+start()
+pausel() '
|
|
N W V4
1 AnimatnActionl
+init()
+tick()
+getState()
SpritePanel
' Model
|
|
|
]
SpritePanel)
observes "
Model 1 |
1 |
7 \/ N
V : Modell
java:;swling. :_ _______ +getSpriteLlistO [>
JPane +alert()

Spritel

+move Tol(Point)

Engineering 5895 Memorial University

Graphics & Animation. Slide 5

Animation Actions

public enum AnimatnActionState { INIT, DONE }

public interface AnimatnActionl {
public void init() ;
public void tick() ;
public AnimationActnState getState() ;

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 6

An ActionPerformers controls an

AnimatnActionl

public class ActionPerformer extends Observable {
public enum State {
READY, RUNNING, PAUSED, DONE } ;
private State state = State. DONE ;
private Modell model,
private AnimationActionl action;
private Timer timer ;

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 7

An ActionPerformer sends ticks to its

AnimatnActionl

public ActionPerformer(Modell model) {
this.model = model;

timer = new Timer(20, new ActionListener() {
@Override public void
actionPerformed(ActionEvent e) { tick() ; } }) ;
}
private void tick() {
if(state == RUNNING) { action.tick(),
if(action.getState() == ActionState.DONE) {
timer.stop() ; state = State. DONE ;
action = null ; setChanged() ; }
model.alert() ; notifyObservers() ; } }

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 8

ActionPerformer: remaining methods

Remaining methods change and report

the ActionPerformer’s state
public void makeReady(AnimatnActionl action)

public void start()
public void pause()

public State getState()

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 9

‘ ActionPerformer state chart

l makeReady()

RUNNING PAUSED

(makeReady can be sent to the actionPerformer regardless of state)

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 10

