
1

Animation with Timers

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 2

A single threaded approach

  Using threads has a down side.
  Thread safety has to be ensured.
  Deadlock has to be avoided

  Using timer objects is an alternative.
  A timer object is an object that periodically

messages a command object.
  These messages are on the GUI event

thread so multithreading is not an issue

The “simple time animation” example

  The timer sends events to a “sprite” object
which updates its state.

  The timer also sends repaint messages to the
display system.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 3

The action based animation example

  Here the “sprites” are passive objects that
can paint them selves and be repositioned.

  The behaviour is factored out into Action
objects.

  An ActionPerformer object encapsulates the
Timer and sends “tick” messages to an
Action object.

  Composite actions can be formed from a list
of individual actions.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 4

ActionPerformers

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 5

Animation Actions

public enum AnimatnActionState { INIT, DONE }

public interface AnimatnActionI {
public void init() ;
public void tick() ;
public AnimationActnState getState() ;

}

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 6

An ActionPerformers controls an
AnimatnActionI

public class ActionPerformer extends Observable {
 public enum State {
 READY, RUNNING, PAUSED, DONE } ;
 private State state = State.DONE ;
 private ModelI model;
 private AnimationActionI action;
 private Timer timer ;

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 7

An ActionPerformer sends ticks to its
AnimatnActionI

 public ActionPerformer(ModelI model) {
 this.model = model;
 timer = new Timer(20, new ActionListener() {

 @Override public void
 actionPerformed(ActionEvent e) { tick() ; } }) ;

}
private void tick() {

 if(state == RUNNING) { action.tick();
 if(action.getState() == ActionState.DONE) {
 timer.stop() ; state = State.DONE ;
 action = null ; setChanged() ; }
 model.alert() ; notifyObservers() ; } }

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 8

ActionPerformer: remaining methods

  Remaining methods change and report
the ActionPerformer’s state

public void makeReady(AnimatnActionI action)
public void start()
public void pause()

public State getState()

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 9

ActionPerformer state chart

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 10

DONE READY

RUNNING PAUSED

makeReady()

start()
When the action is
DONE

pause()

start()

(makeReady can be sent to the actionPerformer regardless of state)

