
1

Agile Design Principles:
Single Responsibility Principle

Based on Chapter 8 of Robert C. Martin,
Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall,
2003.

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 2

SRP: Single Responsibility Principle

  “A class should only have one reason to
change”

  Consequently most changes will affect a
small proportion of classes.

  This is closely related to Information Hiding
which says that each axis of change should
be isolated in a small set of modules.

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 3

Responsibility = Reason to Change
  Martin defines a responsibility to be “a reason to change”, in the

context of the SRP.
  I don’t particularly like this definition. I prefer responsibilities to

be stated in terms of the services classes provide to clients.
E.g.

  The Sorter class may be used to sort an array.
  Implicit in this responsibility are several potential axes of

change.
  What type of data is to be sorted?
  What array is to be sorted?
  What order is to be used?
  Is the sort stable?
  What algorithm is used?

  You can think of SRP as the “Single Reason to Change
Principle”

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 4

Refactoring

  “Refactoring” means improving the internal design
without changing the external behaviour

  When a change is required that was not anticipated,
we should identify a new axis of change

  When a new axis of change is discovered we should
“refactor” first and then change

  Poor software engineers make software more brittle
when they change it

  Good software engineers improve the flexibility of
software when they change it

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 5

Don’t over design.

  We can (and should) anticipate likely reasons
to change.

  But: We should not make them up.
  There is no point protecting the design

against classes change that are likely not to
occur.

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 6

Don’t Underdesign

  One principle of Agile design is “Do the
simplest thing that could possibly
work.” (From Beck and Cunningham.)

  However the simplest thing is often
unnecessarily brittle.

  It is very good to ask the question: “What’s
the simplest thing that could possibly work”,
but you should avoid building in brittleness.

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 7

The SRP in action

  Consider this problem. We need to process
some information that comes from a local file.

  We need to be able to open files, close files,
read from files.

InputFile f = new InputFile() ;
f.open(directoryPath, relativePath) ;
process(f) ;
f.close() ;

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 8

SRP in Action

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 9

The SRP in action

  What might change
  How files are read: Do we read one character at a

time or can we do formatted input.

One character
at a time Several

characters
Formatted
read

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 10

A Change

  All is well until the customer says:
We need to be able to process data from the web.

  This uncovers a new axis of change: Where
the file comes from
  Is it local, accessed by http, read by ftp, or …

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 11

SRP in Action

One character
at a time Several

characters
Formatted
read

local

http

ftp

from jar

 This axis is orthogonal to how the file is read

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 12

SRP in action

  We should refactor
so that this
unanticipated
change becomes
an anticipated
change.

© 2003 T. S. Norvell Engineering 5895 Memorial University
Single Responsibility Principle.

 Slide 13

SRP in action

  Now add the new
functionality

  Now each class
represents commitment
to a point on a single
axis of change

