
1

Introduction to UML

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 2

UML

  UML is a visual modelling Language
  visual --- UML documents are a diagrams.
  modelling --- UML is for describing systems
  systems --- may be software systems or

domains (e.g. business systems), etc.
  It is semi-formal

  The UML definition tries to give a reasonably well
defined meaning to each construct.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 3

Classes and Class Diagrams

  Classes
  Fields and Operations
  Association
  Composition
  Generalization
  Interfaces and Abstract Classes

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 4

Classes

  Classes are specifications for objects
  Consist of (in the main)

  A name
  A set of attributes (aka fields)
  A set of operations

  Constructors: initialize the object state
  Accessors: report on the object state
  Mutators: alter the object state
  Destructors: clean up

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 5

Java representation of a class

class Student {
private long studNum ;
private String name ;
public Student(long sn, String nm) {

studNum = sn ; name = nm ; }

public String getName() { return name ; }
public long getNumber() { return studNum ;}

}

Name
Attributes

Operations

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 6

UML Representation of a class

Note: UML model may contain more info.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 7

Classes in UML

UML can be used for many purposes.
  In software design UML classes usually

correspond to classes in the code.
  But in domain analysis UML classes are

typically classes of real objects (e.g. real
students) rather than their software
representations.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 8

Usage of (software) classes

A class C can be used in 3 ways:
  Instantiation. You can use C to create new

objects.
  Example: new C()

  Extension. You can use C as the basis for
implementing other classes
  Example: class D extends C { … }

  Type. You can use C as a type
  Examples: C func(C p) { C q ;… }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 9

Relationships Between Classes

  Association
  Aggregation
  Composition
  Dependence
  Generalization

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 10

Association Relationships

  Two classes are “associated” if each instance of one
may be associated with instances of the other.

  Associations are typically named.
  Associations are often implemented with pointers

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 11

Multiplicity Constraints

  Each Department is
associated with one
DepartmentHead and at
least one
DepartmentMember

  Each DepartmentHead
and DepartmentMember
is associated with one
Department

  No constraint means
multiplicity is unspecified

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 12

Role names

  Role names may be
given to the ends of an
association

  Only name roles when
it adds clarity

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 13

Navagability

  An arrow-head
indicates the direction
of navigability.

  E.g. Given a student
object, we can easily
find all Sections the
student is taking.

  No arrow-head: means
navigability in both
directions.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 14

Implementing navigable associations

Usually implemented with fields
 class Student {

private List<Section> sections ; … }

class Department {
private DepartmentHead deptHead ; … }

*

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 15

Implementing associations indirectly

  An association between objects might also
be stored outside of the objects
class Department {
private static

Map<Department,DepartmentHead> heads =
new<Department,DepartmentHead> HashMap();

DepartmentHead getHead() {
return heads.get(this) ; }

…

}

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 16

Aggregation

  Aggregation is a special
case of association.

  It is used when there is
a “whole-part”
relationship between
objects.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 17

Composition
  Composition is a special case of aggregation.
  Composition is appropriate when

  each part is a part of one whole
  the lifetime of the whole and the part are the

same.
  Graphically it uses a solid diamond

Student
Record

Student
Number

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 18

Recursive associations

  Associations may relate
an class to itself.

  The objects of the class
may or may not be
associated with
themselves.

  (For example, the left and right
children of a node would not
be that node. But a
GraphNode object might be its
own neighbour.)

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 19

Associations vs. attributes

  Both are usually implemented by fields (a.k.a. data
members).

  Use attributes for primitive types such as integer,
boolean, char, etc, and pointers to such.

  Use association (or aggregation) for pointers that
point to classes or interfaces.

  Use composition for data members that are classes.
(Not possible in Java).

  Use composition if the life time of the part is identical
to or contained in the lifetime of the whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 20

Degrees of belonging

  Attribute. Lifetime of attribute equals life time
of object that contains it.

  Composition. Lifetime of the part equals or is,
by design, nested within the lifetime of the
whole.

  Aggregation. Whole-part relationship, but
parts could be parts of several wholes, or
could migrate from one container to another.

  Association. Relationship is not part/whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 21

Generalization/Specialization
  Represents “is-a-kind-

of’’ relationships.
  E.g. every Chimp is

also an Ape.
  In OO implementation it

represents class
inheritance: Inheritance
of interface and of
implementation too.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 22

Interfaces

  Interfaces are classes
that have no associated
implementation.

  I.e.
  no attributes,
  no implementations for

any operations
  In UML use either

stereotype to indicate
an interface, or
“lollypop”

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 23

Realization

  Classes “specialize”
classes, but “realize”
interfaces. Similar
concept, similar
notation. (Note dashes)

  Choice of notations.
Diagrams at right are
equivalent.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 24

Generalization/Specialization and
Realization in Java
UML terminology Java terminology

C specializes D C extends D

C realizes D C implements D

class TestCharInput
 extends TestInput
 implements CharSource
{
 …
}

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 25

The Substitution Principle

  Suppose class C specializes class D
or class C realizes interface D
  Then any properties that should hold true of

all D objects should hold true of all C objects.
  Question:

  Should Rectangle specialize Square, or
  should Square specialize Rectangle, or
  neither should specialize the other?

  More on this later.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 26

Abstract operations

  An operation O is “abstract” in class C if it does not
have an implementation in class C.

  The implementation of the operation will be filled in
in specializations of C.

  abstract class TreeNode {
abstract int height() ; … }

class Leaf extends TreeNode {
int height() { return 1 ; } … }

class Branch extends TreeNode {
 TreeNode r, l ;
int height(){return Math.max(l.height(),

 r.height) ; } … }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 27

Abstract in VP

  In VP classes are made
abstract with a
checkbox in the
specification.

  Likewise for operations
(class must be abstract
first).

  Italics or slanted text
indicate abstractness

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 28

Abstract and Concrete classes

  Classes that have abstract operations can not be
instantiated --- since this would mean that there is
no implementation associated with one of the
object’s operations

  Classes that can not be instantiated are called
abstract classes.

  Classes that can be are called concrete
  In UML use the <<abstract>> stereotype for abstract

classes and operations.
  Alternatively: The name of the abstract class or operation is

in italics.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 29

Dependence

A class C depends on class D if the
implementation or interface of C mentions D.
  C extends D or implements D
  C has a field of type D or pointer to D or array of D
  C creates a new D
  C has an operation that has a

  parameter
  local variable
  return type

of type D of a pointer to D or an array of D etc.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 30

Dependence

  Often dependence is implicit in generalization or
association relationships.

  When it is not, you may want to indicate
dependence explicitly.

  Stereotypes and documentation can add detail.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 31

Dependence

  Dependence relations are important to note
because unneeded dependence makes
components
  harder to reuse in another context
  harder to isolate for testing
  harder to write/understand/maintain, as the

depended on classes must also be understood
  It is better to depend on an interface than on

a class.
  More on this later.

32

More on Associations

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 33

Association Classes

  Sometimes associations need attributes themselves.
  An employment relationship between an employer and

employee might have a employee number associated
with it.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 34

set, bag, ordered, and sequence

  In math a
  A set is an unordered collection without duplication
  A bag is an unordered collection with possible duplication
  An ordered set is an ordered collection without duplication
  A sequence is an ordered collection with possible duplication

duplication order
set

bag √
ordered set √

sequence √ √

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 35

set, bag, ordered, and sequence

  By default, pairs are associated only once.
  Thus

means that, while each employer can have
many employees, each employee has
only one employment link with each
employer.

  Thus each employee can only have one
employee number.

  Each employer has a set of employees.
We can emphasise this point with an
annotation:

{set}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 36

set, bag, ordered, and sequence

  Now consider this association

  It implies (incorrectly) that a student can only have
one enrolment per university!.

  (Remember the {set} is the default.)

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 37

set, bag, ordered, and sequence

  We need a special annotation to say that the same
(University/Student) pair can have multiple
Enrolment links

{bag}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 38

set, bag, ordered, and sequence

  Consider a OS’s representation of a display screen. It
has a set of windows, but furthermore the set is
ordered.

  Use the ordered annotation for ordered sets

{ordered}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 39

set, bag, ordered, and sequence

  Now consider a Stack of StackItems. The diagram

{bag}

correctly shows that the same StackItem object may
appear on the same stack more than once.

  But we may want to further indicate that the items
on each stack are ordered

{sequence}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 40

set, bag, ordered, and sequence

  Unfortunately the version of Rose we currently
have does not support these annotations. As a
work-around, use UML notes.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 41

Qualified Associations

  An association may require other information. For
example, given a StudentDataBase, one can find an
associated Student “given a student number’’

  Could be implemented by an array or a some kind of
map structure (search tree or hash table).

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 42

n-ary Associations

  Normally associations are binary, but we can have
n-ary associations for n > 2.

  Multiplicities are given assuming all other objects are
fixed.

  Example: In a genogram application we might have

