Introduction to UML

UML

UML is a visual modelling Language
visual --- UML documents are a diagrams.
modelling --- UML is for describing systems

systems --- may be software systems or
domains (e.g. business systems), etc.

It is semi-formal

o The UML definition tries to give a reasonably well
defined meaning to each construct.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 2

Classes and Class Diagrams

Classes

Fields and Operations
Association

Composition

Generalization

Interfaces and Abstract Classes

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 3

Classes

Classes are specifications for objects

Consist of (in the main)
2 A name
o A set of attributes (aka fields)

o A set of operations
Constructors: initialize the object state
Accessors: report on the object state
Mutators: alter the object state
Destructors: clean up

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 4

Java representation ot a class

Name

class Student { Attributes

private long studNum ;
private String name ;
public Student(long sn, String nm) { Opera loNns

studNum =sn ; name =nm; }
public String getName() { return name ; }
public long getNumber() { return studNum ;}

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 5

UML Representation of a class

Note: UML model may contain more info.

Student

&yname : String
&pstudNum : long

“getNum() : long

“<<constructor>> Student(long, String)
“getName() : String

© 2003--2009 T. S. Norvell

Memorial University

Slide set 2. Slide 6

Classes in UML

UML can be used for many purposes.

In software design UML classes usually
correspond to classes in the code.

But in domain analysis UML classes are
typically classes of real objects (e.g. real
students) rather than their software
representations.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 7

Usage ot (software) classes

A class C can be used in 3 ways:

Instantiation. You can use C to create new
objects.
0 Example: new C ()

Extension. You can use C as the basis for
Implementing other classes

0 Example: class D extends C { .. }

Type. You can use C as a type
o Examples: C func(Cp) { C g ;.. }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 8

Relationships Between Classes

Association
Aggregation
Composition
Dependence
Generalization

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 9

Association Relationships

Two classes are “associated’ if each instance of one
may be associated with instances of the other.

Associations are typically named.
Associations are often implemented with pointers

Student takes Section

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 10

Multiplicity Constraints

Each Department is
associated with one

DepartmentHead and at | Deparment Departiment
least one D (7
DepartmentMember &J%

Each DepartmentHead D,

and DepartmentMember|PepartmentMember

IS associated with one
Department

No constraint means
multiplicity is unspecified

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 11

Role names

Role names may be
given to the ends of an | professor
association

Only name roles when 1..*@
it adds clarity

teaches

o.-{ assigned section
takes

Student Section

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 12

Navagability

An arrow-head

Indicates the direction

of navigability.

E.g. Given a student
object, we can easily
find all Sections the
student is taking.

ANO arrow-head: means

navigability in both
directions.

© 2003--2009 T. S. Norvell

Student

takes

Department

Section

/

DepartmentHead

Memorial University

Slide set 2. Slide 13

Implementing navigable associations

Usually implemented with fields

class Student {

private List<Section> sections ; ..

class Department {

private DepartmentHead deptHead ;

© 2003--2009 T. S. Norvell

Student

takes

Department

Section

DepantmentHead

1 1

Memorial University

Slide set 2. Slide 14

Implementing associations indirectly

An association between objects might also
be stored outside of the objects

class Department ({

private static
Map<Department, DepartmentHead> heads =
new<Department, DepartmentHead> HashMap () ;

DepartmentHead getHead () |
return heads.get(this) ; }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 15

Aggregation

Aggregation is a special Slide

case of association.

0.*

It is used when there is

>

TextArea

a "whole-part” Paragraph

0.*

Glyph

<>

relationship between

objects.

© 2003--2009 T. S. Norvell Memorial University

Slide set 2. Slide 16

Composition
Composition is a special case of aggregation.

Composition is appropriate when
o each part is a part of one whole

o the lifetime of the whole and the part are the
same.

Graphically it uses a solid diamond

Student ¢ Student
Record Number

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 17

Recursive associations

Associations may relate -leftchid

01 -rightChild

. 1
an class to itself. D AVLTreeNode

The objects of the class
may or may not be
associated with
themselves.

(For example, the left and right
children of a node would not
be that node. But a
GraphNode object might be its
own neighbour.)

© 2003--2009 T. S. Norvell Memorial University

s

GraphNode

0.*’I'-nieghbours

Component

(fromawt) &

0.\

contains

Slide set 2. Slide 18

Associations vs. attributes

Both are usually implemented by fields (a.k.a. data
members).

Use attributes for primitive types such as integer,
boolean, char, etc, and pointers to such.

Use association (or aggregation) for pointers that
point to classes or interfaces.

Use composition for data members that are classes.
(Not possible in Java).

Use composition if the life time of the part is identical
to or contained in the lifetime of the whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 19

Degrees of belonging

Attribute. Lifetime of attribute equals life time
of object that contains it.

Composition. Lifetime of the part equals or is,
by design, nested within the lifetime of the
whole.

Aggregation. Whole-part relationship, but
parts could be parts of several wholes, or
could migrate from one container to another.

Association. Relationship is not part/whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 20

Generalization/Specialization

Represents “is-a-kind- Chimp Person
of’ relationships. |

E.g. every Chimp is v

also an Ape. Ape

In OO implementation it

represents class v

Inheritance: Inheritance
of interface and of
Implementation too.

Primate

DepartmentHead > DepantmentMember

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 21

Interfaces

<<interface>>

Interfaces are classes CharSource Class
that have no associated notation j
implementation. T
l.e.
o no attributes,
o no implementations for O Lolypop B]

any operations CharSource

In UML use either
stereotype to indicate
an interface, or

“lollypop”

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 22

Realization

Classes “specialize”
classes, but “realize”
interfaces. Similar
concept, similar
notation. (Note dashes)

Choice of notations.
Diagrams at right are
equivalent.

TestCharlnput
TestCharlnput
<<interface>> 4}
CharSource CharSource
“getNextChar{)
“endOfSequence()

© 2003--2009 T. S. Norvell Memorial University

Slide set 2. Slide 23

Generalization/Specialization and
Realization in Java

UML terminology Java terminology
C specializes D C extends D
C realizes D C implements D

class TestCharInput UesiCullyp

extends TestInput 7
implements CharSource y
{ L

<<interface>>
\ CharSource Testinput

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 24

The Substitution Principle

Suppose class C specializes class D
or class C realizes interface D

Then any properties that should hold true of
all D objects should hold true of all C objects.
Question:

o Should Rectangle specialize Square, or
o should Square specialize Rectangle, or
o neither should specialize the other?

More on this later.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 25

Abstract operations

An operation O is “abstract” in class C if it does not
have an implementation in class C.

The implementation of the operation will be filled in
In specializations of C.

abstract class TreeNode {
bstract i1nt height () ; ..

class Leaf extends TreeNode {
int height() { return 1 ; } .. }
class Branch extends TreeNode ({
TreeNode r, 1 ;
int height () {return Math.max(l.height(),
r.height) ; } .. }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 26

Abstract in VP

In VP classes are made

abstract with a Leafl Branch
CheC_k_bOX_ in the “height() : int “height() : int
specification.

Likewise for operations

(class must be abstract

TreeNode

first).

Italics or slanted text

Sheight() : int

Indicate abstractness

© 2003--2009 T. S. Norvell Memorial University

Slide set 2. Slide 27

Abstract and Concrete classes

Classes that have abstract operations can not be
Instantiated --- since this would mean that there is
no implementation associated with one of the
object’s operations

Classes that can not be instantiated are called
abstract classes.

Classes that can be are called concrete

In UML use the <<abstract>> stereotype for abstract
classes and operations.

o Alternatively: The name of the abstract class or operation is
In italics.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 28

Dependence

A class C depends on class D if the
Implementation or interface of C mentions D.
o C extends D or implements D
o C has a field of type D or pointer to D or array of D
o C createsanew D
a

C has an operation that has a
parameter
local variable
return type

of type D of a pointer to D or an array of D etc.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 29

Dependence

Often dependence is implicit in generalization or

association relationships.

When it is not, you may want to indicate
dependence explicitly.

Stereotypes and documentation can add detail.

Facade

<<Lcreates>>

-_____--______-_--______-_>,

© 2003--2009 T. S. Norvell

CodeGenerationRule

Memorial University

Slide set 2. Slide 30

Dependence

Dependence relations are important to note
because unneeded dependence makes
components

o harder to reuse in another context

o harder to isolate for testing

a harder to write/understand/maintain, as the
depended on classes must also be understood

It is better to depend on an interface than on
a class.

More on this later.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 31

More on Associations

32

Association Classes

Sometimes associations need attributes themselves.

An employment relationship between an employer and
employee might have a employee number associated
with it.

Employer Employee

Employmeant
-&nmployenﬂumbar : Digit8equanca

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 33

set, bag, ordered, and sequence

In math a

o A set is an unordered collection without duplication

o A bag is an unordered collection with possible duplication

o An ordered set is an ordered collection without duplication

o A sequence is an ordered collection with possible duplication

duplication | order

set
bag v
ordered set v
sequence v Vv

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 34

set, bag, ordered, and sequence

By default, pairs are associated only once.

Employea

T h us Employer

Employmant
&loyepNumber : DigitS8equanca

means that, while each employer can have
many employees, each employee has

only one employment link with each
employer.

Employae

Employer

Thus each employee can only have one

employee number.

Each employer has a set of employees.
We can emphasise this point with an

annotation:

© 2003 T. S. Norvell Engineering 5895 Memorial University

{set}

Employmant

&yamployapNumber : DigitSequanca

Slide set 2. Slide 35

set, bag, ordered, and sequence

Now consider this association

University

Student

Enrolment

&courseNumber : CRN

It implies (incorrectly) that a student can only have

one enrolment per university!.
(Remember the {set} is the default.)

© 2003 T. S. Norvell

Engineering 5895 Memorial University

Slide set 2. Slide 36

set, bag, ordered, and sequence

We need a special annotation to say that the same

(University/Student) pair can have multiple
Enrolment links

University

{bag}

© 2003 T. S. Norvell

Enrolment

EcoumeNumher : GRN

Engineering 5895 Memorial University

Student

Slide set 2. Slide 37

set, bag, ordered, and sequence

Consider a OS's representation of a display screen. It

has a set of windows, but furthermore the set is
ordered.

Use the ordered annotation for ordered sets

Screen {ordered} | \Nindow
1 *

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 38

set, bag, ordered, and sequence

Now consider a Stack of Stackltems. The diagram

Stack | bagl | Stackltem

* *

correctly shows that the same Stackltem object may
appear on the same stack more than once.

But we may want to further indicate that the items
on each stack are ordered

Stack | {sequence} | Stackltem

> *

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 39

set, bag, ordered, and sequence

Unfortunately the version of Rose we currently
have does not support these annotations. As a
work-around, use UML noftes.

{ordered}
Screen Window

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 40

QQualified Associations

An association may require other information. For
example, given a StudentDataBase, one can find an
associated Student “given a student number”

Could be implemented by an array or a some kind of
map structure (search tree or hash table).

StudentDataBase Student

- StudentNumber =

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 41

n-ary Associations

Normally associations are binary, but we can have
n-ary associations for n > 2.

Multiplicities are given assuming all other objects are

fixed.

Example: In a genogram application we might have
RN

© 2003 T. S. Norvell

Man

0..1

father

0..1

mother

child

Person -+

Woman

Engineering 5895 Memorial University

Slide set 2. Slide 42

