
1

State Pattern

From Gamma et al.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 2

Finite State Machines

  A finite state machine (or finite state
automaton) is an object that behaves in a
finite set of distinct ways based on its past
input and on its own choices.

  We can often model the behaviour of things
using finite state machines.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 3

A Car Stereo

  You need to design the software for a car
stereo.

  The stereo has 4 push buttons.
  Mode. Changes mode between “FM radio mode”

and CD player mode.
  Play. Turns the radio or CD player on or off.
  Up. Moves to next track or scans to higher radio

station.
  Down. Moves to previous track or scans to lower

radio station.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 4

In a diagram we have

  The “CD On” state is only entered if there is a CD in
the player

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 5

The Controller Class

  We need to implement a controller class that will
interpret button clicks coming from the console and
turn them into commands to the StereoDriver

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 6

First Cut

  Our First approach is actually a big
improvement over any ad hoc approach.

  We represent each state with a unique
integer. (Could also use an Enum type.)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 7

First Cut

public class StereoController {
private static final int FMOFF = 0, FMON = 1, CDON

= 2, CDOFF = 3 ;
private int currentState = FMOFF ;
…

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 8

First Cut

public void play() {
switch(currentState) {
case FMOFF: {

radio.turnOn() ;
currentState = FMON ;
break ; }

case FMON : {
radio.turnOff() ;
currentState = FMOFF ;
break ; }

case CDOFF: {
if(cd.isCDInserted()) {

cd.turnOn() ;
current = CDON ; }

break ; }
case CDON : {

cd.turnOff() ;
currentState = CDOFF ;
break ; } }

default: assert false ;
}
And so on for all other input

events.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 9

Reflection

  At this point we have an approach that is at
least organized as opposed to ad hoc

  Unlike our state diagram, it is organized by
events.
  Information about events is concentrated.
  Information about states is dispersed among

many methods (but still encapsulated in the class)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 10

Resilience to Change

  A state machine has several axes of change
  New states may be added or removed
  New events may be added or removed
  New transitions may be added or removed

  Time for next year’s model.
  There is a new mode. “External input”. So that

people can plug in their MP3 player.
  The current design can be adapted, but we must

make changes in many places.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 11

Is there another organization?

  To better deal with changes to the set of
states, we will reorganize the class to
concentrate information on each state in one
place

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 12

The reorganized class

  Delegates events to a currentState object.
public class StereoController {

static final State fmOffState = new FMOffState() ;
static final State fmOnState = new FMOnState() ;
static final State cdOffState = new CDOffState() ;
static final State cdOnState = new CDOnState() ;
private State currentState = fmOffState ;

public void play() { currentState.play(this) ; }
public void mode() { currentState.mode(this) ; }
public void up() { currentState.up(this) ; }
public void down() { currentState.down(this) ; }
…

}

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 13

The reorganized class

abstract class State {
void play(StereoController c) {}
void mode (StereoController c) {}
void up (StereoController c) {}
void down (StereoController c) {}

}
  This class provides a default behaviour for each event,

which is to ignore the event.
  As an alternative, we might choose not to provide any

body for these methods. This forces the programmer to
provide an implementation in any concrete subclass.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 14

The reorganized class
class FMOffState extends State {

void play(StereoController c) {
c.turnRadioOn() ;
c.setCurrentState(c.fmOnState) ; }

void mode(StereoController c) {
c.setDisplayModelToCD() ;
if(c.isCDInserted()) {

c.turnCDOn() ;
c.setCurrentState(c.cdOnState) ; }

else {
c.setCurrentState(c.cdOffState) ; } }

}

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 15

In a diagram

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 16

Now add the new state

  At this point we can add a new state. This
minimally impacts the other states.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 17

The State Pattern

  Intent: “Allow on object to alter its behaviour
when its internal state changes. The object
will appear to change its class.” [Gamma 94]

  Applicability: Use when
  “An objects behaviour depends on its state and it

must change its behaviour depending on state”

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 18

Structure

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 19

Consequences
  + State specific behaviour is localized

  Makes it easy to add and remove states
  Allows states to be arranged in an inheritance hierarchy to share

common behaviour
  + Avoids conditional branching

  Thus simplifying the logic
  + Makes state model explicit

  If state information is spread over multiple variables, the state
model is obscured. Consider

deviceEnum currentDevice ; // FM or CD
boolean on ; // Is the current device “on”

  The meaning of “on” depends on the value of “currentDevice ”
  - Responsibility is spread over more classes.

  The context will typically have to expose its internal design to the
state classes.

  For simple problems, the State pattern may be over-design.

