State Pattern

From Gamma et al.

Finite State Machines

A finite state machine (or finite state
automaton) is an object that behaves in a
finite set of distinct ways based on its past
iInput and on its own choices.

We can often model the behaviour of things
using finite state machines.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 2

A Car Stereo

You need to design the software for a car
stereo.

The stereo has 4 push buttons.

o Mode. Changes mode between “FM radio mode”
and CD player mode.

o Play. Turns the radio or CD player on or off.

o Up. Moves to next track or scans to higher radio
station.

o Down. Moves to previous track or scans to lower
radio station.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 3

In a diagram we have

up or down
[FMOn
play ¢
play mode CDOff }
mode
FMOff
mode v
mode
CDOn
U) play
up or down

The “"CD On” state is only entered if there is a CD in
the player

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 4

The Controller Class

We need to implement a controller class that will
interpret button clicks coming from the console and
turn them into commands to the StereoDriver

StereoButtons

StereoController

L

RadioDriver

© 2003-2009 T. S. Notrvell

Memorial University

N

Display

CDDriver

Slide set 9. Slide 5

First Cut

Our First approach is actually a big
improvement over any ad hoc approach.

We represent each state with a unique
integer. (Could also use an Enum type.)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 6

First Cut

public class StereoController {

private static final int FMOFF =0, FMON =1, CDON
=2, CDOFF =3 ;

private int currentState = FMOFF ;

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 7

First Cut

public void play() {

switch(currentState) {

case FMOFF: {
radio.turnOn() ;
currentState = FMON ;
break ; }

case FMON : {
radio.turnOff() ;
currentState = FMOFF ;
break ; }

case CDOFF: {
if(cd.isCDlInserted()) {
cd.turnOn() ;
current = CDON ; }
break ; }
case CDON : {
cd.turnOff() ;
currentState = CDOFF ;
break ; } }
default: assert false ;

}

And so on for all other input
events.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 8

Retlection

At this point we have an approach that is at
least organized as opposed to ad hoc

Unlike our state diagram, it is organized by
events.
o Information about events is concentrated.

o Information about states is dispersed among
many methods (but still encapsulated in the class)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 9

Resilience to Change

A state machine has several axes of change
o New states may be added or removed

2 New events may be added or removed

o New transitions may be added or removed

Time for next year's model.

o There is a new mode. “External input”. So that
people can plug in their MP3 player.

o The current design can be adapted, but we must
make changes in many places.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 10

Is there another organization?

To better deal with changes to the set of
states, we will reorganize the class to
concentrate information on each state in one
place

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 11

The reorganized class

Delegates events to a currentState object.
public class StereoController {

static final State fmOffState = new FMOffState() ;

static final State fmOnState = new FMOnState() ;

static final State cdOffState = new CDOffState() ;

static final State cdOnState = new CDOnState() ;

private State currentState = fmOffState ;

public void play() { currentState.play(this) ; }
public void mode() { currentState.mode(this) ; }
public void up() { currentState.up(this) ; }
public void down() { currentState.down(this) ; }

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 12

The reorganized class

abstract class State {
void play(StereoController ¢) {}
void mode (StereoController c) {}
void up (StereoController ¢) {}
void down (StereoController ¢) {}

This class provides a default behaviour for each event,
which is to ignore the event.

As an alternative, we might choose not to provide any
body for these methods. This forces the programmer to
provide an implementation in any concrete subclass.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 13

The reorganized class
class FMOffState extends State {

void play(StereoController ¢) {
c.turnRadioOn() ;
c.setCurrentState(c.fmOnState) ; }

void mode(StereoController ¢) {
c.setDisplayModelToCD() ;

if(c.isCDlInserted()) {

c.turnCDON() ;

c.setCurrentState(c.cdOnState) ; }
else {

c.setCurrentState(c.cdOffState) ; } }

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 14

‘ In a diagram

~—FMOn FMOTF CDOn CDOff

StereoController <7
+play() State
+mode0 currentState |[~Play(c : StateController)
~mode(c : StateController)
i < 1 |.up(c : StateController)
+down(uplc : StateController
~setCurrentState(s : State) ~down(c : StateController)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 15

Now add the new state

At this point we can add a new state. This
minimally impacts the other states.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 16

The State Pattern

Intent: “Allow on object to alter its behaviour
when its internal state changes. The object
will appear to change its class.” [Gamma 94]

Applicability: Use when

2 “An objects behaviour depends on its state and it
must change its behaviour depending on state”

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 17

‘ Structure

eventi) is

state.eventi(this) ConcreteState0 ConcreteStatel
: [|
|
| \V
Context AbstractState

+event0() > -state [. entO(c : Context)

+eventl() 1 |~eventl(c: Context)

+event2() ~eventZ(c : Context)

© 2003-2009 T. S. Norvell

Memorial University Slide set 9. Slide 18

Consequences

+ State specific behaviour is localized
o Makes it easy to add and remove states

o Allows states to be arranged in an inheritance hierarchy to share
common behaviour

+ Avoids conditional branching
o Thus simplifying the logic
+ Makes state model explicit

o If state information is spread over multiple variables, the state
model is obscured. Consider
deviceEnum currentDevice ; // FM or CD
boolean on ; // Is the current device “on”

o The meaning of “on” depends on the value of “currentDevice ”
- Responsibility is spread over more classes.

o The context will typically have to expose its internal design to the
state classes.

o For simple problems, the State pattern may be over-design.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 19

