Design by contract
and defensive programming

Detensive programming

Defensive programming is a loosely defined
collection of techniques to reduce the risk of
failure at run time.

One technique is “Making the software
behave in a predictable manner despite
unexpected inputs or user actions.” [0]

Related: Making the software behave in a
predictable manner despite internal errors
(bugs).

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Detensive programming

Design by Contract is complementary to
defensive programming because

o With preconditions, it makes clear which inputs (to
methods) are unexpected.

o With postconditions, it makes it clear when an
internal bug has occurred.

o But it does not prescribe predictable behaviour in
the face or unexpected inputs and internal errors.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Aside on Java’s assert statement

Java's assert statement provides some
support for defensive programming.

asserti>0;
means
{if(1(i>0)) throw new AssertionError() ; }
If the program is run with assertions enabled.

The VM parameter “—ea” will enable
assertions.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Aside on Java’s assert statement

However when a Java program is run without
assertions enabled, assert statements have
no effect.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

Assert statements and defensive
programming

Consider a search routine
[** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
*and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Assert statements and defensive
programming

Bob implemented it like this
[** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
*and ((there is no i such that a[i]==x) implies result==a.length)

*/

int search(double x, double[] a) {
intk=0:
while(k < a.length && a[k] 1= x) ++k ;
return k ;

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

Assert statements and defensive
programming
Chris implemented it like this

[** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
*and ((there is no i such that a[i]==x) implies result==a.length)

*/
int search(double x, double[Ja){ rn.ows an exception if
aorbeld)
condition is false and
intk=0; assertion checking is

while(k < a.length && a[k] != x) ++k ; enabled

@= a.length || alk] == x .

return k ;
}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

Assert statements and defensive
programming

Dan implemented it like this
[** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {
Assert.check(a != null , “search’ precondition failed”);

intk=0;

while(k < a.length && a[k] != x) ++k ;

Assert.check(k == a.length || a[k] == x , “search’ postcondition failed”) ;
return k ;

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

Assert statements and defensive
programming

Dan’s Assert class looks like this

class Assert {

static void check(boolean cond, String message) {
if(! cond) throw new AssertionError(message) ; }

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

Assert statements and defensive
programming

Eve implemented it like this

[** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
*and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

ifla==null) return 0 ;

intk=0;

while(k < a.length && a[k] != x) ++k ;

return k ;

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Assert statements and defensive
programming
Bob, Chris, Dan and Eve all wrote code that

meets the contract.
Bob was not practicing defensive programming

Chris and Dan were practicing defensive
programming.

Eve was practicing poor programming! If you
take the time to check a precondition, it is better
to make someone aware of the failures.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Fail-tast programming

Defensive checks (such as assertions) are analogous to
fuses in a power circuit.

They cause erroneous systems to “fail fast”. |l.e. to fail
before further damage is done.

They also help pinpoint the root cause of a fault.

A safety critical system should also “fail safe”. The
combination of fail fast, fail safe, fault tolerance (recovery
from failure), and failure reporting is the best.

Eve’s solution masks the earlier error and is a “garbage
In — garbage out” solution.

(Further reading http://martinfowler.com/ieeeSoftware/failFast.pdf)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Partial vs. Full checks

Note that Chris and Dan did not check the
postcondition, rather they checked an implication
of the postcondition. (A “partial check”.)

Whether it is worth the computational and design
costs to check the full pre- or postcondition is a
function of many inputs

o The confidence in the code.

o The cost of error.

o The cost of a partial check vs. a full check

o The sufficiency of a partial check vs. a full check.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Defensive programming and contracts

Defensive programming is complementary to the
use of contracts.

A contract obviously guides the writing of run-time
defensive checks.

A defensive check helps ensure that the contract is
being respected.

Systems such as JML, Spec#, and .NET Contracts
can automatically turn contracts into run-time

defensive checks.

Further reading

o http://www.eecs.ucf.edu/~leavens/JML/

o http://research.microsoft.com/en-us/projects/specsharp/

o http://research.microsoft.com/en-us/projects/contracts/default.aspx

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

Defensive programming and contracts

Of course if contracts can be proved to be
respected, there is no need for defensive
checks.

Systems such as JML, Spec#, and .NET
Contracts can automatically verify that
contracts are respected.

Further reading

o http://www.eecs.ucf.edu/~leavens/JML/
o http://research.microsoft.com/en-us/projects/specsharp/

o http://research.microsoft.com/en-us/projects/contracts/
default.aspx

© 2009 T. S. Norvell Memorial University Specification of methods Slide 16

Reterences

[0] Wikipedia, “Defensive programming”
accessed January 2103

© 2009 T. S. Norvell Memorial University Specification of methods Slide 17

