
1

Design by contract
and defensive programming

Defensive programming

  Defensive programming is a loosely defined
collection of techniques to reduce the risk of
failure at run time.

  One technique is “Making the software
behave in a predictable manner despite
unexpected inputs or user actions.” [0]

  Related: Making the software behave in a
predictable manner despite internal errors
(bugs).

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Defensive programming

  Design by Contract is complementary to
defensive programming because
  With preconditions, it makes clear which inputs (to

methods) are unexpected.
  With postconditions, it makes it clear when an

internal bug has occurred.
  But it does not prescribe predictable behaviour in

the face or unexpected inputs and internal errors.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Aside on Java’s assert statement

  Java’s assert statement provides some
support for defensive programming.

assert i > 0 ;
 means
 {if(!(i>0)) throw new AssertionError() ; }
 if the program is run with assertions enabled.
  The VM parameter “–ea” will enable

assertions.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Aside on Java’s assert statement

  However when a Java program is run without
assertions enabled, assert statements have
no effect.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Assert statements and defensive
programming
  Consider a search routine

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

Assert statements and defensive
programming
  Bob implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
return k ;

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

Assert statements and defensive
programming
  Chris implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

assert a != null ;
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
assert k == a.length || a[k] == x ;
return k ;

}

Throws an exception if
condition is false and
assertion checking is
enabled

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

Assert statements and defensive
programming
  Dan implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

Assert.check(a != null , “’search’ precondition failed”);
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
Assert.check(k == a.length || a[k] == x , “’search’ postcondition failed”) ;
return k ;

}

Assert statements and defensive
programming
  Dan’s Assert class looks like this

class Assert {
static void check(boolean cond, String message) {
 if(! cond) throw new AssertionError(message) ; }

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Assert statements and defensive
programming
  Eve implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

if(a == null) return 0 ;
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
return k ;

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Assert statements and defensive
programming
  Bob, Chris, Dan and Eve all wrote code that

meets the contract.
  Bob was not practicing defensive programming
  Chris and Dan were practicing defensive

programming.
  Eve was practicing poor programming! If you

take the time to check a precondition, it is better
to make someone aware of the failures.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Fail-fast programming

  Defensive checks (such as assertions) are analogous to
fuses in a power circuit.

  They cause erroneous systems to “fail fast”. I.e. to fail
before further damage is done.

  They also help pinpoint the root cause of a fault.
  A safety critical system should also “fail safe”. The

combination of fail fast, fail safe, fault tolerance (recovery
from failure), and failure reporting is the best.

  Eve’s solution masks the earlier error and is a “garbage
in – garbage out” solution.

  (Further reading http://martinfowler.com/ieeeSoftware/failFast.pdf)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Partial vs. Full checks

  Note that Chris and Dan did not check the
postcondition, rather they checked an implication
of the postcondition. (A “partial check”.)

  Whether it is worth the computational and design
costs to check the full pre- or postcondition is a
function of many inputs
  The confidence in the code.
  The cost of error.
  The cost of a partial check vs. a full check
  The sufficiency of a partial check vs. a full check.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

Defensive programming and contracts

  Defensive programming is complementary to the
use of contracts.

  A contract obviously guides the writing of run-time
defensive checks.

  A defensive check helps ensure that the contract is
being respected.

  Systems such as JML, Spec#, and .NET Contracts
can automatically turn contracts into run-time
defensive checks.

  Further reading
  http://www.eecs.ucf.edu/~leavens/JML/
  http://research.microsoft.com/en-us/projects/specsharp/
  http://research.microsoft.com/en-us/projects/contracts/default.aspx

© 2009 T. S. Norvell Memorial University Specification of methods Slide 16

Defensive programming and contracts

  Of course if contracts can be proved to be
respected, there is no need for defensive
checks.

  Systems such as JML, Spec#, and .NET
Contracts can automatically verify that
contracts are respected.

  Further reading
  http://www.eecs.ucf.edu/~leavens/JML/
  http://research.microsoft.com/en-us/projects/specsharp/
  http://research.microsoft.com/en-us/projects/contracts/

default.aspx

References

  [0] Wikipedia, “Defensive programming”
accessed January 2103

© 2009 T. S. Norvell Memorial University Specification of methods Slide 17

