Contracts for objects -- 0

Clear Box Specification

Contracts for classes

Now we extend the idea of contracts to
classes.

As an example, we consider a class for
representing rational numbers.

We use a simple data structure:

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 2

Rational

class Rational {
private double numerator ;
private double denominator ;

// requires d 1= 0.0
/| ensures denominator’ 1= 0.0

public Rational(double n, double d) {
numerator = n ; denominator =d ; }

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 3

Rational

/[requires denominator != 0.0
/| ensures result == numerator / denominator

public double toDouble() {
return numerator / denominator ; }

Does it make sense to require the client to ensure
that the denominator is not O before calling
toDouble?

We should not force the client to reason in terms of
the private fields of an object.

To do so is contrary to the principles of information
hiding and abstraction.

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 4

Objects are meant to represent things.

There are certain states of the objects that
are sensible and certain states that --while
representable by the fields— should not be
reachable. These states do not represent
things.

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 5

Invariants

It is the job of the implementer of a class (not
its clients) to ensure that the objects of the
class do not reach states that are not
sensible.

An object invariant is a description of the
states that of an object that are sensible.

We start again. This time we state the
iInvariant

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 6

Invariants

class Rational {
/[invariant denominator != 0.0
protected double numerator ;
protected double denominator ;

/[requires d 1= 0.0

public Rational(double n, double d) {
numerator = n ; denominator =d ; }

/| ensures result == numerator / denominator

public double toDouble() {
return numerator / denominator ; }

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 7

Invariants

"he client coder does not need to think about
the invariant.

The implementer may assume that the
invariant is true at the start of each method.

But the implementer must also ensure that
the each method and constructor of the class
establishes the invariant at its end.

Thus each method should preserve the
iInvariant.

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 8

Another example

As a second example, we use a dictionary
that creates and records an association
between strings and small integers.

We use a simple data structure:

L1\ N

/ S

hello ||riposte| | lunge | | game | | parry

© 2009 T. S. Norvell Memorial University Specification of objects — clear box Slide 9

Data structure

class Dictionary {
public final static INIT _CAPACITY =10 ;

protected int size = 0 ;
protected String[] a = new String[INIT _CAPACITY] ;

/| modifies size, a
/l ensures size’ == 0 and a’ != null

public Dictionary(){ ... }

/| ensures result == size
public int getSize() { ... }

// requires a != null
// ensures result == a.length
public int getCapacity() { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 10

oetlnt

/[requires str != null

// and a != null and 0 <= size and size <= a.length

/[and (for all i in {0,1,...,size-1}, a[i]'=null)

/[and (for all i,j in {0,1,...,size-1}, a[i]==a]j] implies i==j)
// ensures

// if(there is aniin {0,1,... size-1}, str.equals(ali]))

// then 0 <= result and result < size

// and str.equals(a[result]))

/| else result == -

public int getint(String str) { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 11

putdtring

// requires str = null and size < a.length

// and a != null and 0 <= size and size <= a.length

/[and (for alliin {0,1,...,size-1}, a[i]'=null)

/[and (for all i,j in {0,1,...,size-1}, a[i]==a[j] implies i==j)
/[modifies a[size], size

// ensures 0 <= result and result <= size’

// and str.equals(a[result]) and (size’ in {size, size+1})

/[and (for alliin {0,1,...,size-1}, a[i] .equals(a[i])

// and a != null and 0 <= size’ and size’ <= a’.length’

// and (for all i in {0,1,...,size’-1}, a[i]' '=null)

/[and (for all i,jin {0,1,...,size’-1}, a[i]'==alj] implies i==))
int putString(String str) { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 12

Invariants

Notice that certain facts about the fields are
required by almost all methods.

Thus these facts must be established by
each constructor and preserved by each

method

These facts essentially define what it means
for the state of the object to be sensible.

Specification of objects — clear box Slide

© 2009 T. S. Norvell Memorial University 13

Invariants

In this example, we require

o That a points to an array:
a != null

o That size is a valid index or equals the capacity:
0 <= size and size <= a.length

o That the first size items of the array are not null:
(for alliin {0,1,...,size-1}, a[i]!l=null)

o That the first size items of a be unique:
(for all i,j in {0,1,...,size-1}, a[i]==a[j] implies i==j)

o If any of these “facts” is false, then the data

structure is corrupt.

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 14

Invariants

We call these facts the object invariant
(sometimes called class invariant)

The object invariant must be ensured by
each constructor and each method of the
class.

The invariant may thus be assumed at the
start of each method.

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 15

Rewriting the class

Now we rewrite the Dictionary class, factoring
out the invariant.

class Dictionary {
public final static INIT_CAPACITY =10 ;
protected int size = 0 ;
protected String[] a = new String[INIT_CAPACITY | ;
// invariant a != null
/] invariant 0 <= size and size <= a.length
/I invariant (for all i in {0,1,...,size-1}, a[i]'=null)
// invariant (for all i, j in {0,1,...,size-1}, a[i]==a[j] implies i==j)

Specification of objects — clear box Slide

© 2009 T. S. Norvell Memorial University 16

Rewriting the class

/I modifies size, a
/l ensures size ==
public Dictionary() { ... }

/| ensures result == size
public int getSize() { ... }

// ensures result == a.length
public int getCapacity() { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 17

Rewriting the class

// requires str != null

/| ensures

I/l if(there is aniin {0,1,...,size-1}, str.equals(ali]))
// then 0O <= result and result < size

// and str.equals(a[result]))

I/l else result == -

public int getIint(String str) { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 18

Rewriting the class

// requires str != null and size < a.length

// modifies a[size], size

// ensures 0 <= result and result <= size’

// and str.equals(a[result])’ and (size’ in {size, size+1})
/[and (for alliin {0,1,...,size-1}, a[i] .equals(a[i])

int putString(String str) { ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 19

Summary

Note that the precondition now contains only
things that the client actually has control

over.

precondition

Client

Server

postcondition

invariant

Flow of obligations

© 2009 T. S. Norvell

Memorial University

Specification of objects — clear box Slide
20

Invariants and defensive checks

We can typically write the invariant as a
method that is called at the end of each
constructor and mutator (method that
changes state). The check can be partial or
full.

To be extra careful, also call it at the start of

each method.
protected void invariant () {
assert a |= null ;
assert 0 <= size && size <= a.length; ... }

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 21

Invariants and callbacks

As mentioned, it is ok for the invariant to
become untrue during the execution of a
method, as long as it is restored by the end.

Of course the invariant must be true also
before any call that might cause a method
invocation on the same object.

In particular you have to be careful about
calling other objects that might call back

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 22

E.go.

void someMutator() {
...make some changes...
invariant() ; // invariant should be true here
notifyAllObservers() ;
... do something else...
invariant() ;

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 23

Invariants and shared objects

Recall that in concurrent programming we should
ensure that shared objects are never “owned” (aka
“occupied”) by more than one thread at a time.

The invariant of a shared object should be true
whenever no thread owns it.

It may be assumed at the start of synchronized
methods.

It should be true on return from synchronized
methods.

t should be true before any call to wait().
t may be assumed after any call to wait().
.€. itis both a pre- and a postcondition of wait().

Specification of objects — clear box Slide
© 2009 T. S. Norvell Memorial University 24

