
1

Turtle-World Programmer’s
Manual

Memorial University 2003 — 2012
Dennis Peters & Theodore Norvell

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 2

What is Turtle-World

Turtle-world is intended to make graphics
programming in Java a bit more accessible
and fun.

  Shapes can be drawn on the screen by
sending commands to a simulated robotic
turtle.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 3

Controlling the turtle

The turtle’s position, velocity, and acceleration
are controlled with the following commands

  crush.setPosition(x, y) ;
  x and y are rectangular coordinates as follows.
  the units are pixels (the smallest rectangle that the

screen can show).
x

y

(40,5)
(0,0)

(5,30)

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 4

Controlling the turtle (cont.)

  crush.setSpeed(v) ;
  Set how fast the turtle is travelling
  Units are pixels per second

  crush.setOrientation(alpha)
  Set the direction of motion
  Units are degrees clockwise from the x-axis

0, 360, -360, 720 etc.

45
90, -270 etc 135

180, -180

225
270

315

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 5

Controlling the turtle (cont.)

  crush.setVelocity(vx, vy) ;
  An alternative way of setting velocity.
  Units are pixels / second

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 6

Controlling the turtle (cont.)

  crush.setRateOfChangeOfSpeed(a) ;
  Controls the rate of change of the speed
  Units are pixels / second / second

  crush.setSpin(omega) ;
  Controls the rate of change of orientation
  Units are degrees / second

  crush.reset() ;
  Sets all position, speed, rate of change of speed

and spin attributes to 0.0.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 7

Interrogating the Turtle

  To find out about the Turtle’s state, we can
use methods that return values.

  double x = crush.getPositionX() ;
  double y = crush.getPositionY() ;
  double s = crush.getSpeed() ;
  double alpha = crush.getOrientation() ;
  double vx = crush.getVelocityX() ;
  double vy = crush.getVelocityY() ;

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 8

Interrogating the Turtle (cont.)

  double a = crush.getRateOfChangeOfSpeed() ;
  double omega = crush.getSpin() ;

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 9

Making your own buttons

  You can add buttons to the Turtle-talk
application by:
  Creating a new “method” in the TurtleController

class. This method should be “public”, “void”, and
have no parameters.

  Adding the name of the method to a list called
“buttons” in the TurtleController class.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 10

Making your own buttons (cont)

Example
  In the editor. Add the following lines to the

TurtleController class
 public void circle() {
 crush.setOrientation(0.0) ;
 crush.setAngularVelocity(45.0);
 crush.setSpeed(50.0) ; }

  Find the “buttons” list near the top of the
TurtleController class. Add “circle” to the list.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 11

Making your own buttons (cont)

  Select “Run” from the “Run” menu.
  Note the “circle” button. What happens if you

click on it?

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 12

Making your own buttons (cont)

  What’s happening?
  When you click on the “circle” button, a “circle()” message

is sent to a “TurtleController” object where the message
causes execution of the “circle” method.

  The “circle” method of the “TurtleController” object sends
three messages to the object named “crush”. These
messages change the initial orientation, the speed, and the
angular velocity of the turtle object.

  A graphical representation of the turtle object is drawn on
the screen.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 13

Adding Check-Boxes

  Check-boxes can be checked and unchecked
by the user.

  To add a check-box you must do two things
  Add the name of the check-box to the list named

“checkBoxes” at the top of the TurtleController
class.

  Add a two methods to the TurtleController that are
public and void and have no parameters. The
names of these methods should be nameOn and
nameOn where name is the name of the check-
box.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 14

Adding Check-boxes example

  Consider adding a check-box called “swerve”
  Add “swerve” to the checkBox list

public static String[] checkBoxes = new String[] { "wiggle",
"checkIntersections", “swerve" } ;

  Messages “swerveOn” and “swerveOff” will be sent
to the TurtleController when the box is checked or
unchecked.

  Add a boolean name “swerve” to the class outside
of any method
private boolean swerve = false ;

  Add a “swerveOff” method
public void swerveOff() {swerve = false ; }

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 15

Adding Check-boxes example

  Add a swerveOn method

public void swerveOn() {
 swerve = true ;
 crush.setRadarRange(50.0);
 while(swerve) {
 if(crush.checkRadar()) {
 crush.setSpin(90);
 } else {
 crush.setSpin(0);
 }
 pause(0.1) ; }
 crush.setSpin(0) ;
 crush.setRadarRange(0.0) ;
}

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 16

Drawing with the Turtle

  Some more turtle commands.
  crush.penDown() ;

  Causes the turtle to start drawing a line.

  crush.penUp() ;
  Causes the turtle to stop drawing a line.

  crush.clearTrail() ;
  Erases whatever the turtle has drawn (and stops

drawing)

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 17

Drawing with the Turtle (cont)

  crush.setTrailLength() ;
  Specifies a maximum length for the trail

  boolean b =
 crush.doesTrailIntersectTrail(t2);

  t2 is another or the same turtle.
  b will be true if the trails intersect.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 18

Radar
  Each turtle has a very limited form of “radar”.

The radar monitors a pie-slice shaped region in
front of the turtle

  First you must set the range of the radar using
crush.setRadarRange(r) ;

where r is a radius measured in pixels. r should be at
least 10.0 as that is the radius of the turtle.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 19

Radar
  You may check whether any object is in the

radar sector by calling
crush.checkRadar()

For example
if(crush.checkRadar()) {

setSpeed(0.0) ; }
  You may check for a specific object

crush.checkRadarFor(somethingElse)
For example

if(crush.checkRadarFor(squirt)) {
increaseCrushsScore; }

  Note the radar only detects other objects, not the
edges of the turtle arena

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 20

Radar (continued)

  You may change the direction that the radar
points with

crush.setRadarDirection(d) ;

where d is in degrees clockwise from the turtles
current heading. The default is 0.0

  You may change the angle of the pie slice
with

crush.setRadarBeamAngle(a) ;
where a is in degrees. The default is 90.0.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 21

Time

  pause(t)
  This command causes the TurtleController to

pause for t seconds.
  Can you make a button to make the turtle

draw a square by tracing out the shape of a
square?

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 22

Start-up Tasks.

  You can give a list of TurtleController
methods to be executed as soon as the
program starts.

  These are listed in a list in the
TurtleController called “startUp”

  For example the TurtleController’s “reset”
method is executed at the start. See next
slide.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 23

An example start-up task.

public static String[] startUp = new String[] {
 "reset", …other start up task names go here… } ;

 public void reset() {
 crush.reset();
 crush.clearTrail() ;
 crush.setTrailLength(Double.POSITIVE_INFINITY) ;
 double x = arena.getWidth() / 2.0 ;
 double y = arena.getHeight() / 2.0 ;
 crush.setPosition(x, y) ; }

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 24

On-going tasks

  A method that does not stop is “on-going”. For
example:

 public void bounce() {
 while(true) {
 double rightEdge = arena.getWidth() ;
 double bottomEdge = arena.getHeight() ;
 double x = crush.getPositionX() ;
 double y = crush.getPositionY() ;
 …much omitted…
 pause(0.1) ;
 }
 }

  Any such on-going loop should include a short “pause”.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 25

On-going start-up tasks.

  By adding an on-going task such as “bounce”
to the startUp list, the method will be
executing all the time.

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 26

Concurrency

  Multiple tasks may be active at a time. This is
called concurrency.

  While the pause command is being executed,
other tasks may change the state of the turtle
world. For example

…
crush.setRateOfChangeOfSpeed(0.0) ;
pause(0.1) ;
double acceleration = crush.getRateOfChangeOfSpeed() ;
// acceleration may, or may not be 0.0.
…

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 27

Creating more turtles

  Initially the TurtleController creates one green
turtle

  You can have it create more turtles
  Add a new “private” field to the TurtleController

  E.g. add a line
private Turtle redTurtle = new Turtle(Color.red) ;;

after the line that says “private Turtle turtle ;

  In the “constructor” of the TurtleController add
arena.add(redTurtle) ;

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 28

The Arena

  The Turtle Controller knows a GrobArena
object by the name “arena” representing the
area on which the turtles move.

  You may interrogate the arena with
double width = arena.getWidth() ;
double height = arena.getHeight() ;

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 29

Adding Turtles to the Arena

  You may add additional turtles
  To add another turtle.

  In the TurtleController class add a variable declaration for
the new turtle. E.g.:

private Turtle crush = new Turtle(Color.blue) ;
private Turtle squirt= new Turtle(Color.red) ;
private GrobArena arena ;

  In the “TurtleController” method add lines as follows
public TurtleController(GrobArena arena, Log log) {
 this.arena = arena ;
 this.log = log ;
 arena.add(crush) ;
 squirt = new Turtle(Color.red) ;
 arena.add(squirt) ;.
}

New lines

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 30

Adding other objects to the Arena

  To add a rectangle to the arena.
  In the TurtleController method. Add these lines

// The constructor
 public TurtleController(GrobArena arena, Log log) {
 this.arena = arena ;
 this.log = log ;
 arena.add(crush) ;
 Rectangle rect = new Rectangle(100, 100, 20, 30) ;
 ShapeGrob r = new ShapeGrob(rect) ;
 arena.add(r) ;
}

New Lines

© 2003 T. S. Norvell & D. K. Peters Memorial University Turtle-World. Slide 31

The Log

  The TurtleController knows a “Log” object by
the name of “log” representing an area on
which you may output messages.
  log.println(s)

  s may be a string or a number
  prints s and then starts a new line.

  log.print (s)
  s may be a string or a number
  prints s

