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It is all too easy to write unsafe multithreaded Java code, in part because the language’s
notify() and wait() methods can be diffi cult to use correctly. In 1974, Tony Hoare proposed
the concept of monitors for designing and reasoning about objects that are shared between
multiple threads. The key property of these “Hoare-style”monitors is that threads can
wait until some specific assertion about the monitor’s state is true and will be guaranteed
that the assertion is still true after the thread has been awakened.
In this article, I describe a Java class library that supports the monitor concept much

as Hoare originally proposed it. As I will demonstrate, object-oriented technology makes
it possible to improve on Hoare’s concept by making assertions – which are traditionally
stated as comments and then repeated in if statements and assert statements – executable
objects. This approach reduces redundant coding and automates assertions checking during
execution.
I’ll start by explaining why multithreaded programming is as unavoidable as it is chal-

lenging, then introduce you to the use of exclusive access, conditions, and assertions in
Hoare-style monitors. See the Resources section to download the Java-based monitors
package, which you are free to use.

1 The case for Hoare-style monitors

Three factors contribute to the ubiquity of multithreaded software, and thus the need for
thread monitors:

• First, to create responsive interactive software, we need to perform tasks that take
more than a few tens of milliseconds on threads other than the GUI event thread.
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• Second is the drive to make the most of today’s multiprocessor, multicore, and si-
multaneous multithreading (hyper-threading) hardware. Computationally intensive
applications must multiple threads to use more than a fraction of the capability of
that hardware.

• Third is distributed computing, which demands that applications deal with multiple
requests simultaneously; for example, RMI invocations each run on their own thread.

Coordinating the activities of two or more threads can be very tricky and can be a
source of latent defects in multithreaded code. Testing is ineffective because tests may not
reveal race conditions. As software engineers we must equip ourselves with the intellectual
and software tools to design correct multithreaded applications.

1.1 Monitoring multithreaded access

In the nineteen-seventies Edsger Dijkstra [1972], Per Brinch Hansen [1973], and C.A.R.
Hoare [1974] developed the idea of a monitor, an object that would protect data by en-
forcing single threaded access – only one thread at a time would be allowed to execute
the code within the monitor. A monitor would be an island of single-threaded calm in a
turbulent sea of multithreadedness. If threads could confine their interactions to be within
the monitors then there would be a much better chance that they wouldn’t interfere with
each other in unanticipated ways.
A number of variants on the idea of monitors have been proposed and implemented

in various programming languages such as Concurrent Pascal, Mesa, Concurrent Euclid,
Turing, and more recently Java. The idea of single-threaded access to a monitor is straight-
forward and the same in all these variants; where they differ is in how threads wait for the
state of the monitor to change, and how they communicate to each other that the state
has changed. Of all these approaches, I’ve always found Hoare’s version the easiest to use.
In Hoare’s version, occupancy of the monitor is transferred directly from a signalling to a
signalled thread: the state of the monitor object can not change in between the signalling
thread leaving and the signalled thread arriving.

1.2 A Java-based implementation of Hoare-style monitors

For the rest of this article I’ll focus on a Java package I’ve developed that implements
Hoare-style monitors. In addition to being a straightforward Java-based implementation
of Tony Hoare’s original concept, the monitor package has one novel feature: it allows all
assertions used in designing a monitor to be expressed as part of the code and checked at
runtime.
To get started, table 1 summarizes the classes in themonitor package. See the Resources

section for the source code for the monitor package.
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public abstract class AbstractMonitor Abstract base class for monitor
protected AbstractMonitor() Constructor
protected boolean invariant() Hook method for invariant
protected void enter() Obtain occupancy
protected void leave() Relinquish occupancy
protected Condition makeCondition( Assertion p ) Make a condition object
protected Condition makeCondition() Make a condition with an always true assertion

public class Monitor Monitor objects for delegation.
public Monitor(Assertion invariant) Construct a monitor with a given invariant
public void enter() Obtain occupancy
public void leave() Relinquish occupancy
public Condition makeCondition( Assertion p ) Make a condition object
public Condition makeCondition() Make a condition with an always true assertion

public class Condition Condition objects
public void await() Wait for a Pc to become true
public void conditionalAwait() If Pc is not true, wait until it is
public void signal() Signal that Pc is true
public void conditionalSignal() If Pc is true, signal so
public void signalAndLeave() Signal that Pc is true and leave the monitor
public void conditionalSignalAndLeave() If Pc is true, signal so and leave the monitor
public int count() The number of threads waiting
public boolean isEmpty() Is the number of threads waiting 0?

public abstract class Assertion Executable assertion objects
public abstract boolean isTrue() Hook method

Table 1: Summary of interfaces
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2 Monitor concepts: Exclusive access

A monitor is an object that only allows exclusive access to its data; that is, data can
be accessed by only one thread at a time. In my monitor package, exclusive access is
accomplished by inheriting from class AbstractMonitor and calling inherited method enter()
to enter the monitor and inherited method leave() to leave it.
Between returning from enter() and invoking leave() a thread is said to occupy the

monitor. At most one thread can occupy the monitor at any time; a thread that invokes
enter() while the monitor is occupied must wait (on an entry queue associated with the
monitor) until the monitor becomes unoccupied. When a thread calls leave(), one thread
waiting on the entry queue – if there is such a thread – is selected and allowed to occupy
the monitor.
Consider the class in Example 1. Without the exclusive access provided by the calls to

enter() and leave() a client might find that the time is 25:60:60 (which should be impossible)
or might find the time to be 13:59:59 when it is really 13:00:00.
Note that this example could equally well be implemented using Java’s synchronized

keyword. The only advantage to using the monitor package for this example is that the
class invariant, embodied as the overridden method invariant(), is checked as part of the
entering and leaving process. The invariant describes the set of states the monitor may be
in when the monitor is not occupied. If the invariant is found to be false on either a return
from enter() or a call to leave(), an Error exception will be thrown. In such a simple class,
checking the class invariant is probably not that useful. However, in more complex classes,
checks of monitor invariants can provide a valuable indication of a bug during testing or
even when the product is deployed.
Since Java does not support multiple inheritance, it is sometimes inconvenient to inherit

from AbstractMonitor. In this case one can use a private field of class Monitor. Monitor is
just like AbstractMonitor, except its methods are public rather than protected.

2.1 Contacts for enter() and leave()
The enter() and leave() methods are well described by contracts, i.e., their preconditions
and postconditions. Here I refers to the monitor’s invariant.

m.enter()
Require: this thread does not occupy the monitor
Ensure: I && this thread alone occupies the monitor

m.leave()
Require: I && this thread alone occupies the monitor
Ensure: this thread does not occupy the monitor
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import monitor.* ;

public class TimeOfDay extends AbstractMonitor{
private int hr = 0, min = 0, sec = 0 ;

public void tick() {
enter() ;

sec += 1 ; min += sec/60 ; hr += min/60 ;
sec = sec % 60 ; min = min % 60 ; hr = hr % 24 ;

leave() ; }

public void get( int[] time ) {
enter() ;

time[0] = sec ; time[1] = min ; time[2] = hr ;
leave() ; }

@Override
protected boolean invariant() {

return 0 <= sec && sec < 60
&& 0 <= min && min < 60
&& 0 <= hr && hr < 24 ; }

}

Example 1: A class with exclusive access
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Figure 1: A UML class diagram for example 2.

3 Conditions

The real power of Hoare-style monitors becomes evident when a thread may have to wait
for something before completing its work in the monitor.

3.1 Condition Objects

A classic example is a bounded FIFO (First In, First Out) queue. A thread that is fetching
from the queue must wait until the queue is not empty; a thread that is depositing data
into the queue, must wait until there is room for data in the queue. Example 2 shows a
FIFO queue with a capacity of 10 objects, implemented in Java using my monitor package.
Figure 1 is a UML class diagram for the FIFO queue in Listing 2.
Example 2 shows a FIFO queue with a capacity of ten objects, implemented in Java

using my monitor package. Figure 1 shows a UML class diagram for the example.
The number of objects present in the queue is count. A fetching thread may have to

wait until count > 0, while a depositing thread may have to wait until count < capacity.
Each of these assertions about the state is represented by a condition object. The two
condition objects are referenced by two private fields and are created by calls to method
makeCondition() inherited from AbstractMonitor.

/** Awaiting ensures: count < capacity */
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import monitor.* ;

public class FIFO extends AbstractMonitor {
private final int capacity = 10 ;

private final Object[] queue = new Object[ capacity ] ;

private int count = 0, front = 0 ;

/** Awaiting ensures: count < capacity */
private final Condition notFull = makeCondition() ;

/** Awaiting ensures: count > 0 */
private final Condition notEmpty = makeCondition() ;

public Object fetch() {
enter() ;

if( ! (count > 0 ) ) { notEmpty.await() ; assert count > 0 ; }
Object value = queue[ front ] ;
--count;
front = (front + 1) % capacity ;
assert count < capacity ; notFull.signal() ;

leave() ;
return value ; }

public void deposit( Object value ) {
enter() ;

if( ! ( count < capacity ) ) {
notFull.await() ; assert count < capacity ; }

queue[ (front + count) % capacity ] = value ; ++count ;
assert count > 0 ; notEmpty.signal() ;

leave() ; }

@Override
protected boolean invariant() {

return 0<=count && count<=capacity && 0<=front && front<capacity ; }
}

Example 2: A fifo queue
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private final Condition notFull = makeCondition() ;

/** Awaiting ensures: count > 0 */
private final Condition notEmpty = makeCondition() ;

Each condition object c is associated with an assertion Pc. In the example PnotFull is
count<capacity, while PnotEmpty is count>0
When a thread needs to wait for an assertion Pc to become true, it invokes c.await().

The effect of c.await() is that the thread that calls it leaves the monitor and waits on a
queue associated with the condition object. While the thread is waiting, it does not occupy
the monitor, and so another thread can enter and possibly make the assertion become true.
Since the thread that invokes await() leaves the monitor unoccupied, the class invariant
should be true when await() is invoked, and indeed await() checks the invariant.
A thread that makes an assertion Pc true may (and usually should) transfer occupancy

to some waiting thread, if there is one. It can do this by invoking the method c.signal().
If one or more threads are waiting on that condition object, one waiting thread is selected
and it enters the monitor. As the selected thread enters the monitor, the signalling thread
leaves the monitor to wait on the monitor’s entry queue. At no point in time, during this
exchange, is the monitor unoccupied; thus the waiting thread will find the monitor in the
same state it was in when the signalling thread called signal(). Only when the monitor is
once again empty does the signalling thread get to reoccupy the monitor and return from
signal().
A flash animation at

www.engr.mun.ca/~theo/Misc/monitors/monitor-movie.swf

illustrates how the threads use enter(), leave(), await(), and signal().

3.2 Conditions and design-by-contract

If we follow the convention that the assertion Pc is true whenever c.signal() is called, then
Pc must be true when c.await() returns. This is sort of a contract that the implementor of
the monitor makes with his or herself. Indeed signal() and await() are best understood in
terms of contracts, based on preconditions and postconditions.

3.2.1 A contract for await()

The precondition of c.await(), as we’ve seen, is the monitor’s invariant, which I’ll call I.
The thread only returns from c.await() when another thread calls c.signal(). From the
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precondition of c.signal(), as we will see, Pc must be true at that time. The contract for
c.await() is

c.await()
Require: I && this thread alone occupies the monitor
Ensure: Pc && this thread alone occupies the monitor

3.2.2 A contract for signal()

What about signal()? If there is a thread waiting on the condition’s queue, then Pc must
be true as a precondition. On return, as the monitor was just empty, the monitor invariant
will be true as a postcondition. But what if there is no thread waiting? In that case,
signal() does nothing and so, to ensure the invariant is true as a postcondition, it should
be a precondition as well. You can express the contract using c.isEmpty(), which indicates
whether any threads waiting on the condition.

c.signal()

Require:
!c.isEmpty() && Pc || c.isEmpty() && I
&& this thread alone occupies the monitor

Ensure: I && this thread alone occupies the monitor

This contract is a bit complicated; in practice, we can almost always use one of two simpler
preconditions instead; each implies the contract’s precondition: one is

Pc&& I && this thread alone occupies the monitor

and the other is

!c.isEmpty() && Pc && this thread alone occupies the monitor

3.2.3 signalAndLeave()

Often, there is no need for a signalling thread to wait and later reoccupy the monitor. In
this case, one can call signalAndLeave(). Upon awakening an awaiting thread, if there is one,
this method returns without re-occupying the monitor. The contract for signalAndLeave()
is

c.signalAndLeave()

Require:
!c.isEmpty() && Pc || c.isEmpty() && I
&& this thread alone occupies the monitor

Ensure: this thread does not occupy the monitor

There’s one more wrinkle to these contracts: they only work if neither the invariant I
nor the assertion Pc depend on the number of threads waiting on c. That’s because the
acts of starting to wait and ceasing to wait change this quantity. Howard [Howard 1976]
and Dahl [Dahl 1994] give correct contracts for the rare cases when I and Pc may depend
on the number of waiting threads.
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public void deposit( Object value ) {
enter() ;

notFull.conditionalAwait() ;
queue[ (front + count) % capacity ] = value ;
count++ ;

notEmpty.signalAndLeave() ; }

Example 3: The deposit method rewritten

4 Assertion objects

Looking back at Example 2, you can see that each assertion appears four times, counting
comments, assert statements, and if statements. For good reason software engineers abhor
such duplication. Of course, you could encapsulate each duplicated assertion in a method,
but then you would have to duplicate the call to the method. In my Java-based monitor
package I’ve provided a better solution, wherein each assertion may be represented by an
object.
Classes representing assertions are created by subclassing Assertion and overriding the

abstract method isTrue(). Each condition object knows one Assertion object and checks the
assertion upon any call to signal(), throwing an exception if the assertion is false. Based on
this approach, you could change the FIFO queue in Example 2 by rewriting the declarations
of the condition objects as follows:

private final Condition notFull = makeCondition(
new Assertion() {

public boolean isTrue() { return count < capacity ; } } ) ;

private final Condition notEmpty = makeCondition(
new Assertion() {

public boolean isTrue() { return count > 0 ; } } ) ;

You can also use assertion objects to replace if statements, such as those in fetch and
deposit, with calls to conditionalAwait(). The rewritten depositmethod is shown in Example
3; the fetch method can be rewritten similarly. The classes for the revised FIFO queue are
shown in Figure 2. Similarly, there is a conditionalSignal() method.
In summary, the following checks are made automatically:
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Figure 2: Classes for the revised FIFO queue.

• The invariant is checked on the return from enter(), the call to leave(), on the call
to await(), on the return from signal(), and, when there is no waiting thread, on the
call to signalAndLeave().

• Assertion objects are checked on calls to signal() or signalAndLeave(), if there is a
waiting thread, and on the return from await().

5 A voting example

As an interesting example of using Hoare-style monitors, let’s look at how a number of
threads can synchronize and exchange information. The specific problem is that a number
of threads must vote on a boolean result. We’ll use a simple majority, with ties going to
false. Example 4 shows the monitor.

5.0.4 About the code

The constructor takes the number of threads involved in the elections. After construction
each thread casts its vote and receives the majority using the castVoteAndWaitForResult
method.
The election is over when votesFor+votesAgainst==N and so this assertion is PelectionDone.

Interestingly this assertion contradicts the invariant. After casting its vote, a thread waits
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import monitor.* ;

public class VoteMonitor extends AbstractMonitor {

private final int N ;
private int votesFor = 0, votesAgainst = 0 ;

private Condition electionDone = makeCondition( new Assertion() {

public boolean isTrue() { return votesFor+votesAgainst == N ; } } ) ;

public VoteMonitor(int N) { assert N>0 ; this.N = N ; }

@Override protected boolean invariant() {
return 0 <= votesFor && 0 <= votesAgainst && votesFor+votesAgainst < N;

}

public boolean castVoteAndWaitForResult(boolean vote) {
enter() ;

if( vote ) votesFor++ ; else votesAgainst++ ;

electionDone.conditionalAwait() ;
// votesFor + votesAgainst == N

boolean result = votesFor > votesAgainst ;

if( ! electionDone.isEmpty() ) {
electionDone.signalAndLeave() ; }

else {
// The last one woken up is the first one out and cleans up.
votesFor = votesAgainst = 0 ;
leave() ; }

return result ;
}

}

Example 4: The Vote Moitor
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for the election to be over by conditionally waiting on electionDone. On returning from
electionDone.conditionalAwait(), the thread can be sure that PelectionDone is true. Thus it
could leave the monitor and return with the result at that time.
This would cause two problems, however. First, only the last thread to vote would

get the result; all others would wait forever. Second, there would be no way to reuse the
monitor object for a second election. To solve these two problems I divided the work. Each
thread awakes one waiting thread, until no threads are waiting on electionDone – I call
this I call this technique “daisy chaining.”The last thread on the chain finds there are no
more threads to awake; it resets the state of the monitor to the original state; having done
that, it has reestablished the monitor invariant and may leave the monitor unoccupied.
Note that the invariant is not true when signalAndLeave is called. Despite the fact that

the invariant has not been reestablished, it is acceptable for the signalling threads to leave
the monitor, because they are not leaving it empty.

6 Comparison to Java’s standard library

It wouldn’t be right to present such a package without comparing it to Java’s ‘native’
monitors built using the synchronized keyword and the wait() and notify() methods from
the Object class.
In Java every object is associated with two queues: an entry queue and a wait queue.

When a thread calls a method marked as synchronized, the thread will wait on the entry
queue until no other thread occupies the object. On returning from a synchronizedmethod
the thread relinquishes occupancy. Threads unconditionally wait on the wait queue by
calling the wait() method of the synchronized object. A call to notify() does not relinquish
exclusive access, rather it simply moves some waiting thread, if there is one, from the
object’s wait queue to the object’s entry queue. There is also a notifyAll() method that
moves all threads from the wait queue to the entry queue.
Java’s native monitors are similar to those in Mesa [Lampson and Redell 1980] and are

sometimes said to use the “signal and continue” (SC) signalling discipline. By contrast,
my monitor package gives the programmer a choice of “signal and wait”(SW) or “signal
and leave”(SL).
Next I’ll summarize the main differences between my monitor package and Java’s wait()

and notify() approach.

Defensive programming: The monitor package provides support for defensive program-
ming through the invariant() method and the assertion objects associated with each
condition object. Java’s notify() and wait() provide no assertion checking.

Multiple wait queues: The monitor package provides condition objects, each providing
its own wait queue. Threads waiting for different assertions to become true wait
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on different queues. Using wait(), there is only one wait queue per object. Threads
waiting for different assertions to become true must all wait on the same queue; thus
a notify() call could awaken a thread that is waiting for the “wrong”assertion. The
usual solution is to replace calls to notify() with calls to notifyAll() and to always put
calls to wait() in a loop, so:

while( ! Pc ) { wait() ; }

Flexible assertions: With Hoare-style monitors it is possible for a waiting thread to
awaken in a state where the class invariant is not true. This gives the designer more
flexibility in choosing the assertions that threads can wait for. When a thread returns
from wait(), it does so from the entry queue and so the invariant must be true.

Seamless passing of occupancy: In the monitor package, following Hoare’s suggestion,
control is passed seamlessly from the signalling thread to an awaiting thread. You
can be sure that, after returning from an await(), the assertion the thread has waited
for is true. In contrast, the notify() and notifyAll() methods simply move a waiting
thread back to the entry queue for the monitor. By the time the waiting thread
actually becomes the occupant, the assertion for which it was waiting may no longer
be true. This is a second reason for putting wait() calls in a loop. But such loops
have a problem: an invocation of notify() that awakes a thread that then re-waits is
effectively lost. As notify() calls can be lost, it can be diffi cult to ensure “suffi cient
signalling”– the property that any waiting thread is eventually awakened. With
the monitor package, ensuring suffi cient signalling requires only ensuring that each
await() be matched by some signal() on the same condition object in the future.

7 Conclusion

Hoare-style monitors provide a sound programming method for coordinating the interac-
tions of multiple threads. In the limited space of this article, I could only illustrate this
point with very simple examples. As the complexity of the interactions increase, the benefit
of using Hoare-style monitors increases.
In Hoare’s original concept, a monitor’s invariant and the assertions associated with

condition variables were purely tools of design and documentation: the truth of the asser-
tions can be proved and there is be no need to check them at runtime. In practice though,
even careful designers make mistakes and, as software evolves, errors can creep in. Thus
it is pragmatic to check assertions at runtime. The monitor package I’ve presented in this
article automatically checks assertions and invariants, letting us move the assertions out
of the comments and into the code.
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Source code for the monitor package can be found at

www.engr.mun.ca/~theo/Misc/monitors/monitors.html
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