
COGENT

Theodore S. Norvell, ECE, Memorial University

Code Generation From Statecharts for real-time, reactive code
1

https://github.com/theodore-norvell/cogent

Context: The onboard mission
control software for the Killick-1
satellite

2

3

4

5

(misra)

ISO 99

https://github.com/theodore-norvell/cogent

Problem: How can we describe
behaviour?

6

https://github.com/theodore-norvell/cogent

How do you tell a story?

Structured programming v. unstructured flowcharts

or

EBNF grammars v. recursive transition nets

7

https://github.com/theodore-norvell/cogent

How do you tell a story about interaction?
Structured narrative v. states and reactions

loop

wait

START_STOP ->

if ready()

send ACK; start()

wait

START_STOP -> stop() ; send DONE

AFTER(5s) -> stop() ; send QUIT

else

send NAK

8

START_STOP

[ready]

/ !ACK;

start

[else] / !NACK

START_STOP / stop; !DONE

after(5s) / stop; !QUIT

https://github.com/theodore-norvell/cogent

How do you tell a story about interaction?
Structured narrative v. states and reactions

loop

wait

START_STOP ->

if ready()

send ACK; start()

wait

START_STOP -> stop() ; send DONE

AFTER(5s) -> stop() ; send QUIT

else

send NAK

9

START_STOP

[ready]

/ !ACK;

start

[else] / !NACK

START_STOP / stop; !DONE

after(5s) / stop; !QUIT

Process Algebra

State Machine

https://github.com/theodore-norvell/cogent

Which is better?
Structured narrative v. states and reactions

10

https://github.com/theodore-norvell/cogent

Which is better?
Structured narrative v. states and reactions

Whatever gets you through the night
It's all right, it's all right
It's your money or your life
It's all right, it's all right
Don't need a sword to cut through' flowers
Oh no, oh no
– John Lennon

11

https://github.com/theodore-norvell/cogent

Which is better?
Structured narrative v. states and reactions

• Me at NECEC 2015 : Process algebra is better

• It's code. It's structured. It's familiar. It's hierarchical. It allows nestable concurrency.

• I showed how to create a process algebra library in fancy OO languages such as
JavaScript, Python, Java, C++.

• I used monads and lambda expressions! Not practical in C.

• Me in 2021: We're programming the tiny OBC of a satellite in C.

• Narrative approach is possible in C.

• But I didn't know that. It does not have nestable concurrency.

• So state machine it is.

12

https://github.com/theodore-norvell/cogent

What's the best kind of state
machine?
And why doesn't everyone use it?

13

https://github.com/theodore-norvell/cogent

Statecharts
David Harel 1987

14

https://github.com/theodore-norvell/cogent

Statecharts
David Harel 1987

• Standardized by UML

• State Charts combine

• State Machines

• Hierarchy

• Nestable concurrency

• Concurrency is non-preemtive

15

https://github.com/theodore-norvell/cogent

Statecharts
David Harel 1987

• State charts have

• Regions

• States

16

https://github.com/theodore-norvell/cogent

Statecharts
David Harel 1987

• The basic rules

• The top region is always active

• In an active region, 1 state is active

• In an active state, all regions are active

• If a state or region is active, so is its parent

17

https://github.com/theodore-norvell/cogent

Statecharts
David Harel 1987

18

Events Reactions

W g
X k; m or m; k

W j

W h

https://github.com/theodore-norvell/cogent

And why doesn't everyone use it?

19

https://github.com/theodore-norvell/cogent

Problems

• Statecharts are not a programming language, they are a modelling notation.

• Models can be tricky to translate by hand to code in (e.g.) C.

• Once translated, it is not easy for code and model to stay in sync.

• Statecharts are diagrams and diagrams are awkward

• Diagrams don't fit well with tools such as "git diff" that show software
evolution and help deal with merge conflicts.

20

https://github.com/theodore-norvell/cogent

Solutions

• Statecharts are not a programming language, they are a modelling notation.

• Models can be tricky to translate by hand to code in (e.g.) C.

• Once translated, it is not easy for code and model to stay in sync.

• Automatically translate to code. (Not a new idea.)

• Statecharts are diagrams and diagrams are awkward

• Diagrams don't fit well with tools such as "git diff" that show software
evolution and help deal with merge conflicts.

21

https://github.com/theodore-norvell/cogent

Solutions

• Statecharts are not a programming language, they are a modelling notation.

• Models can be tricky to translate by hand to code in (e.g.) C.

• Once translated, it is not easy for code and model to stay in sync.

• Automatically translate to code. (Not a new idea.)

• Statecharts are diagrams and diagrams are awkward

• Diagrams don't fit well with tools such as "git diff" that show software
evolution and help deal with merge conflicts.

• Use a simple textual representation of the diagrams.

22

https://github.com/theodore-norvell/cogent

Solutions

• Automatically translate to code. (Not a new idea.)

• Use a simple textual representation of the diagrams.

23

"Diagrams as code"

"Code as diagrams"

https://github.com/theodore-norvell/cogent

Solutions

24

"Diagrams as code"

"Code as diagrams"
"Code as diagrams as code"

https://github.com/theodore-norvell/cogent

Solution: What is Cogent?

25

https://github.com/theodore-norvell/cogent

Cogent

• A simple translator from statecharts to (mostly) Misra compliant C.

• The input is in the PlantUML language

26

PlantUML (text) file

Cogent

Documentation

file

C file

https://github.com/theodore-norvell/cogent

Cogent

• A simple translator from statecharts to (mostly) Misra compliant C.

• The input is in the PlantUML language

• The pre-existing PlantUML tool creates the diagrams as image files

27

PlantUML (text) file

PlantUML

Cogent

Documentation

file

C file

PNG

files

Viewer

Docs on screen

https://github.com/theodore-norvell/cogent

Input language
PlantUML

28

@startuml

 state A {

 state A0A

 state A0B

 [*] --> A0A

 A0A --> A0B : Z / f

 }

 state B {

 state B0A

 state B0B

 [*] -> B0A

 B0A -> B0B : X / k

 B0B -> B0A : W / j

 --

 state B1A

 state B1B

 [*] -> B1A

 B1A -> B1B : X / m

 B1B -> B1A : Z / n

 }

 [*] --> A

 A -> B : W / g

 B -> A0B : W / h

@enduml

PlantUML is widely
used tool for
generating diagrams
from textual
descriptions.

It defines a set of
related domain
specific languages

It has a language for
Statecharts

https://github.com/theodore-norvell/cogent

Input language
PlantUML

29

Plant UML allows any text on transitions

Cogent imposes a syntax and interpretation on this text

GO Triggered when a GO event arrives.

after(100 ms) [ready and willing]
Triggered any time after 100 ms if conditions ready and
willing are both true

[! blocked] Triggered as soon as condition blocked is false

GO [! blocked] / start ; !ACK Causes actions start and send_ACK.

https://github.com/theodore-norvell/cogent

Generated code interface

.

.

.
void initStateMachine_figs(TIME_T now) {
 .
 .
 .
}

bool_t dispatchEvent_figs(event_t *event_p, TIME_T now) {
 .
 .
 .
}
.
.
.

30

Developer supplies:

• Suitable event type

• Suitable TIME_T type

• Event dispatch loop

• One event kind per event
trigger

• One procedure per condition

• One procedure per action

https://github.com/theodore-norvell/cogent

Generated code
Fast and RAM efficient. No function pointers.
bool_t dispatchEvent_figs(event_t *event_p, TIME_T now) {
 bool_t handledRoot = false ;
 switch(currentChild_a[G_INDEX_root]) {
 case L_INDEX_A : {
 bool_t handled_A = false ;
 /* Code for OR state 'A' */{
 switch(currentChild_a[G_INDEX_A]) {
 case L_INDEX_A0A : {
 /* Code for basic state 'A0A' */{
 /* Event handling code for state A0A */
 switch(eventClassOf(event_p)) {
 case EVENT(Z) : {
 status_t status = OK_STATUS ;
 handled_A = true ;
 /* Transition from A0A to A0B. */
 exit_A0A(-1) ;
 /* Code for action NamedAction(f). */
 LOG_ACTION_START("f")
 status = ACTION(f)(event_p, status) ;
 LOG_ACTION_DONE("f")
 enter_A0B(-1, now) ;
 handled_A = true ;
 } break ;
 default : { }
 }
 }/* End of basic state 'A0A' */
 } break ;

31

 case L_INDEX_A0B : { ...Code for A0B... } break ;
 default : { assertUnreachable() ; }
 }
 if(! handled_A) {
 /* Event handling code for state A */
 switch(eventClassOf(event_p)) {
 case EVENT(W) : {
 status_t status = OK_STATUS ;
 handled_A = true ;
 /* Transition from A to B. */
 exit_A(-1) ;
 /* Code for action NamedAction(g). */
 LOG_ACTION_START("g")
 status = ACTION(g)(event_p, status) ;
 LOG_ACTION_DONE("g")
 enter_B(-1, now) ;
 } break ;
 default : { }
 }
 }
 }/* End of OR state 'A' */
 handled_Root = handled_A ;
 } break ;
 case L_INDEX_B : {
 bool_t handled_B = false ;
 ...code for both regions of B...
 ...code for B itself if handle_B is false...
 }
 handled_Root = handled_B ;
 } break ;
 default : { assertUnreachable() ; }
 }
 /* State root has no outgoing transitions. */
 }/* End of OR state 'root' */
 return handledRoot;
}

https://github.com/theodore-norvell/cogent

Scalability
How can we deal with complex machines?

32

"Submachines"

• Allow state machine diagram and PUML code
to be broken into smaller pieces

• Cogent stitches the submachines together

https://github.com/theodore-norvell/cogent

The past, present, and future

33

https://github.com/theodore-norvell/cogent

The past

• Many tools and libraries have supported translation of Statecharts and
other kinds of state machine diagrams to code

• None have really caught on

• Most are not suitable for embedded code

34

https://github.com/theodore-norvell/cogent

The present

• Cogent is being used in the Killick-1 successfully

• Students seem to have learned to use statecharts effectively

• It may be used in the next satellite project

• It is open source and cost free

35

https://github.com/theodore-norvell/cogent

Assessment

• Pro

• Statechart diagrams are fairly easy to create, understand, and review

• Textual form has little baggage and if "diff friendly"

• Cogent produces usable code

• Concurrency with little nondeterminism and surprises

• Provides a clear abstraction boundary

• Con

• Treatment of data is awkward. E.g. communication between actions.

36

https://github.com/theodore-norvell/cogent

The future

• More coverage of UML statecharts, e.g. entry and exit actions

• Using text input has good points

• But it is still a bit awkward

• PUML has some limitations

• I'd still like to see a graphical editor

• that takes a hybrid approach

• with a graphical diff/merge tool
37

