
COMPILING PARALLEL APPLICATIONS TO COARSE-GRAINED RECONFIGURABLE
ARCHITECTURES

Mohammed Ashraful Alam Tuhin

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL A1B 3X5
maatuhin@ucalgary.ca

Theodore S. Norvell

Faculty of Electrical and Computer Engineering
Memorial University of Newfoundland

St. John’s, NL A1B 3X5
theo@engr.mun.ca

ABSTRACT

In this paper a novel approach for compiling parallel applications to a
target Coarse-Grained Reconfigurable Architecture (CGRA) is pre-
sented. We have given a formal definition of the compilation prob-
lem for the CGRA. The application will be written in HARPO/L, a
parallel object oriented language suitable for hardware. HARPO/L
is first compiled to a Data Flow Graph (DFG) representation. The re-
maining compilation steps are a combination of three tasks: schedul-
ing, placement and routing. For compiling cyclic portions of the
application, we have adapted a modulo scheduling algorithm: mod-
ulo scheduling with integrated register spilling. For scheduling, the
nodes of the DFG are ordered using the hypernode reduction mod-
ulo scheduling (HRMS) method. The placement and routing is done
using the neighborhood relations of the PEs.

Index Terms— Coarse-grained Reconfigurable Architecture, Mod-
ulo Scheduling, Routing Resource Graph, Graph Homeomorphism,
Static Token

1. INTRODUCTION

Reconfigurable computing has been an active field of research for
the past two decades. To overcome the disadvantages of Field Pro-
grammable Gate Arrays (FPGAs), many coarse-grained or ALU-
based reconfigurable architectures have been proposed as an alterna-
tive between FPGA-based systems and fixed logic CPUs. Although
CGRAs have the potential to exploit both hardware like efficiency
and software like flexibility, the absence of proper compilation ap-
proaches is an obstacle to their widespread use. There has not been
much work on compiling applications directly on to systems con-
taining only CGRAs.

Compiling applications to CGRA, after the source code of the
target application has been transformed and optimized to a suitable
intermediate representation, is a combination of three tasks: schedul-
ing, placement, and routing. Scheduling assigns time cycles to the
operations for execution. Placement places these scheduled opera-
tion executions on specific processing elements. Routing finds routes
to data from producer PE to consumer PE using the interconnect
structure of the target architecture.

The main contribution of this paper is to formally define the
compilation problem for CGRAs and propose a compilation approach
for a family of CGRAs. The target architecture will be specified by
the user. The intended application will be written in HARPO/L [1].
The input of the compilation is the intermediate representation of the
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target application in the form of a DFG and a description of the target
architecture; the output will be executable code. HARPO/L is first
compiled to a DFG representation [2]. The remaining compilation
steps are: scheduling, placement and routing. The rest of the paper is
organized as follows. Section 2 discusses how the input application
will be presented to the back end of the compilation process. Section
3 describes our target architecture and an overview of our compila-
tion process. Section 4 describes the modulo scheduling algorithm
for cyclic portions of the target application. Section 5 describes the
placement and routing steps performed during mapping from the in-
put DFG to the input target architecture. Section 6 concludes the
paper with possible future work.

2. EXECUTABLE DFG FROM SOURCE LANGUAGE

The input application is written using HARPO/L and then after some
transformation and optimization the intermediate representation is
obtained in the form of executable DFG.

2.1. Source Language Description

In [1] a language named HARPO/L (HARdware Parallel Objects
Language) has been designed that targets CGRAs as well as mi-
croprocessors. HARPO/L is a structured language with a co con-
struct used to express parallelism. It is a parallel, object-oriented,
multi-threaded programming language. The language design allows
explicit parallelism and enables the compiler to extract inherent par-
allelism.

2.2. Executable DFGs: The Input

We use the executable DFGs, represented by static token form for
parallel program [2], as input for scheduling, placement and routing.
We can represent our input executable DFG as a Graph DFG =
(N,E, op, inRole, outRole) such that:

• N is the set of nodes.

• E is set of edges labeled by roles. e← represents the source
of an edge, while e→ represents the target of that edge. in-
Role is a function E −→ roles, while outRole is a function
E −→ roles.

• op is a function: N −→ operations, which labels nodes
with operations.



3. FRAMEWORK OF OUR TARGET ARCHITECTURE

We can represent the target architecture specified by the architecture
designer by a graph TA = (C,R), such that:

• C = FU
⋃
RF is the set of functional units and registers.

• R is the set of interconnections where r←, r→ ∈ C for each
r ∈ R.

For compilation purposes we have modeled our target architecture
with routing resource graph (RRG). RRG is basically obtained by
replicating the target architecture graph TA an infinite number of
times and giving necessary interconnections across time cycles.

An RRG is a directed graph RRG = (C × N, A
⋃
B

⋃
D).

A
⋃
B

⋃
D is the set of interconnections in a time cycle and across

time cycles in a forward direction. Here C ×N is the vertices of the
graph, i.e., resources of the TA replicated across time.

The set A, B, and D and the interconnection relations for their
edges can be expressed as follows:

• A = {(i, r)|r→ ∈ FU, i ∈ N}
(i, r)← = (r←, i), for all (i, r) ∈ A
(i, r)→ = (r→, i), for all (i, r) ∈ A

• B = {(i, r)|r→ ∈ RF, i ∈ N}
(i, r)← = (r←, i), for all (i, r) ∈ B
(i, r)→ = (r→, i+ 1), for all (i, r) ∈ B

• D = {(i, f)|f ∈ RF, i ∈ N}
(i, f)← = (f←, i), for all (i, f) ∈ D
(i, f)→ = (f→, i+ 1), for all (i, f) ∈ D

4. FRAMEWORK OF OVERALL COMPILATION

Our target is to compile parallel applications to a given target archi-
tecture with optimal execution time. For that the target application
is first written in HARPO/L. Then the source code is transformed
and optimized to get the intermediate representation in the form of
executable DFG. Here we have used the static token form for paral-
lel programs. This executable DFG and the target architecture in the
form of RRG is the two inputs of the back end of our compilation
procedure. The output of compilation will be the executable code
for the given CGRA and the given application.

Figure 1 shows the framework of our overall compilation.

4.1. Overview of our Compilation flow

After target architecture transformation and intermediate representa-
tion of the target application, we have two input graphs, an RRG and
an executable DFG. Now our tasks is to map the DFG onto the RRG
as efficiently as possible so that the execution clock cycle is as few
as possible. We can consider the RRG as the source graph and the
DFG as the target graph.

We will now give an overview of our compilation process. Our
idea is to first analyze the DFG to extract some information that may
be useful in the later phases. We are assuming here that the DFG
given as input has been optimized using various common optimiza-
tion techniques. The DFG is transformed by removing conditional
branches and thus control dependences. For doing this we adopted
the if-conversion method using predicates of [3] as is done in [4].
In If-conversion control dependences are converted to data depen-
dences by computing a condition for executing each operation.

Since the input DFG can be cyclic, we need some approach for
partitioning the cyclic and acyclic parts from the DFG. Then we will

Fig. 1. Overall framework of our Compilation approach.

apply mapping (from DFG to RRG) for both the parts separately and
integrate them for mapping as a whole.

For mapping acyclic parts we will use the most commonly used
list scheduling algorithm for resource constrained scheduling prob-
lems. In the list scheduling algorithm, instead of using the conven-
tional priority functions, we will use the approach of [5].

Cyclic parts will be mapped using a register-constrained mod-
ulo scheduling method, improved modulo scheduling with integrated
register spilling (MIRS) algorithm
[6]. For both the cyclic and acyclic parts, the nodes of the DFG will
be placed to the processing elements of the target architecture and
necessary routing is done accordingly.

4.2. Compilation Problem Formulation

Assuming all operation latencies are 1, we can formulate the schedul-
ing, placement, and routing problem as one of finding a node disjoint
subgraph homeomorphism (f1, f2) between the input executable
DFG = (N,E, op, inRole, outRole) and theRRG, modeled from
the input target architecture, such that:
• f1(n) = (k, t) Here k is the resource (functional unit) which

will execute n’s operation. t is the execution time of n. f1(n)
must be capable of executing n’s operation, for all nodes n ∈
N . For any two nodes u, v ∈ V , f1(u) 6= f1(v) = φ, if
u 6= v.

• f2(e) = f2(n0, n1) = P , such that start(P ) = (k0, t0)
and end(P ) = (k1, t1). Here f2(e) is a path from n0 to
n1. f2(e) must be capable of carrying e’s information, for
all edges e ∈ E. For any two edges e0, e1 ∈ E, f2(e0) is
disjoint from f2(e1) apart from endpoints, if e0 6= e1.

But an operation can have latency greater than 1. So we need to
generalize the above formulation. We can formulate our scheduling,
placement, and routing problem as one of finding a pair of functions
(f1, f2) between the input executableDFG and theRRG such that:
• f1(n) = {(k, t), (k, t+1), ..., (k, t+λn−1), }Here k is the

processing element which will execute n’s operation. t is the



start time when n will start executing and λn is the latency
of n’s operation. f1(n) must be capable of executing n’s
operation, for all nodes n ∈ N . For any two nodes u, v ∈ V ,
f1(u) ∩ f1(v) = φ, if u 6= v.

• f2(e) = f2(n0, n1) = P , such that start(P ) = (k0, t0 +
λn0 − 1) and end(P ) = (k1, t1). f2(e) must be capable of
carrying e’s information, for all edges e ∈ E. For any two
edges e0, e1 ∈ E, f2(e0) is disjoint from f2(e1) apart from
endpoints, if e0 6= e1.

Our formulated compilation problem has the following desired prop-
erties:

• n must be scheduled to be processed on a unique processing
element f(n) = c ∈ C × N starting at a unique time.

• A processing element k can process at most one node’s oper-
ation at a given time t.

• If a node n1 ∈ N is a predecessor of another node n2 ∈ N ,
then n1 must complete its operation’s execution before n2’s
operation starts.

5. SCHEDULING

In this section we will discuss how to schedule, map and route cyclic
parts, especially loops of an application. We will adapt Modulo
Scheduling with Integrated Register Spilling (MIRS) [6]. MIRS is a
software scheduling method that is capable of instruction scheduling
with reduced register requirements, register allocation and register
spilling in a single phase. But MIRS alone cannot do the required
compilation for our problem. The reason is that MIRS does only
scheduling and placement, it does not consider routing. We need
to do routing during placement. The reason is as follows. Dur-
ing placement a cost function is computed to evaluate the quality
of placement. While calculating that cost function, we need to in-
corporate routing cost. So we have modified the MIRS algorithm to
incorporate this feature.

Another factor that we have incorporated into the MIRS algo-
rithm is the consideration of loops with conditional branches. For
doing this we have adapted the if-conversion and reverse-if-conversion
idea from [3].

The input of the algorithm will be an executable DFG repre-
senting the cyclic part and the RRG. There are two outputs of the
algorithm. One is the initiation interval (II). Another is a schedule of
the nodes of the DFG, which is the pair of functions f1 and f2. This
schedule will enable each node of the DFG to execute at its time cy-
cle in its resource. Here f1 is a partial function that maps each node
of the DFG scheduled so far to a set of a pair of values: a time cycle
and a resource and f2 is a partial function that maps each edge of the
DFG to a path in the RRG

5.1. Schedule Place Route

Figure 2 shows the actual scheduling, placement, and routing step
of the IMIRS algorithm. In this phase a node is scheduled start-
ing from a particular clock cycle in one or more resource(s) (func-
tional unit(s) and/or register(s)). II and MII are initiation interval
and minimum initiation interval respectively [7]. It first calculates
the Early Startu and Late Startu of the node u to be scheduled,
which produces a time frame in which that node can be scheduled
legally. Suppose the Start and End defines this time frame. For
scheduling node u, Mapping() determines one or more resources in

the RRG within this time frame starting from Start that produces op-
timal cost. During this checks are done so that there are valid routes
from/to the predecessors/successors of u to u. Checks are also done
so that there is no violation of dependence or no resource conflict.
If such free resources are found, u is scheduled to the time cycles
indicated from the position of the resource(s) in the RRG. Necessary
updates are made to the partial schedule, resources, and registers.
However, if no valid cycle is found, then the Force and Eject heuris-
tic is applied. The partial schedule is scanned forwards or back-

Procedure Schedule Place Route(DFG, RRG,
f1, f2, u) {

var Start, End;
if (Pred(u) is in Partial Schedule) {

Start = Early Startu;
End = Early Startu + II − 1; }

else if (Succ(u) is in Partial Schedule) {
Start = Late Startu;
End = Late Startu − II + 1;}

else if (both Pred(u) and Succ(u) are in
Partial Schedule) {

Start = Early Startu;
End = min(Late Startu,Early Startu + II − 1);}

else {
Start = ASAPu;
End = ASAPu + II − 1;}

if (not Mapping(DFG, RRG, f1, f2, u,
Start, End))
Force And Eject(i, u); }

Fig. 2. Scheduling Phase of the IMIRS algorithm.

wards depending on the values of Early Start, Late Start, II,
and whether predecessors or successors of the node to be sched-
uled are already placed in the partial schedule. This is done ac-
cording to the rules from [5]. The Force And Eject Heuristic, the
Check and Insert Spill Heuristic, and the Restart Schedule Heuris-
tic are given in detail in [6].

5.2. Improved MIRS for Compilation on CGRA

Figure 3 shows the pseudocode of improved MIRS algorithm for
adapting to CGRA for cyclic parts. This algorithm uses the node
ordering strategy of [5] for assigning priority to the nodes of the
DFG. Mapping(), is used for placement of operations and routing
them from producer FU to consumer FU in the available time cycles.
The basic steps of the algorithm are summarized below.

At first the algorithm initializes the II with MII, f1 and f2 to
empty functions. After the algorithm is completed f1 will map all
the nodes of the DFG with each node having one or more time cy-
cles and a resource depending on the latency of the node’s opera-
tions. Budget is initialized to the number of nodes of the DFG times
the Budget Ratio, where Budget Ratio is the average number of
times that each node of the DFG can be attempted to be scheduled
with a fixed value of II.

After these initializations all the nodes of the DFG is ordered ac-
cording to [5]. The ordered nodes are inserted into Priority List.
Then the algorithm iteratively tries to schedule, place, and route
operations from the Priority List. In each iteration, the opera-
tion with the highest priority is removed from the list and Sched-



Procedure IMIRS(DFG, RRG) {
var II := MII(DFG);
var f1 := empty();
var f2 := empty();
var Priority List := Order HRMS(DFG);
var Budget := Budget Ratio× Number Nodes(DFG);
while (!Priority List.empty()) {

var u := Priority List.highest Priority();
Priority List.remove(u);
Schedule Place Route(DFG, RRG, f1, f2, u);
if (Priority List.empty())

Register Allocation(DFG, f1, f2);
Check and Insert Spill(DFG,f1,f2,Priority List);
if (Restart Schedule(DFG, Budget))

Re Initialize(II + +,f1,f2,Priority List);
else

Budget--;
}
Generate Code(f1, f2, II);

}

Fig. 3. Improved MIRS algorithm for Compilation on CGRA.

ule Place Route() tries to find a FU for its execution using a route
of free edges of the RRG that minimizes a cost heuristics. If such
a FU and time cycle is found without violating any intra-iteration
or inter-iteration dependency and resource constraints then those FU
and time cycle are reserved for that operation so that they cannot be
utilized by any subsequent operations until it is finished with utiliz-
ing them.. However, if no such cycle exists, then the algorithm em-
ploys the Force And Eject technique in which the node to be sched-
uled is forced to a specific cycle. Force And Eject, at the same time,
ejects some nodes that were the reasons for dependency violations
or resource conflicts.

Then the algorithm determines whether there is any need to spill
values to memory to reduce the register pressure. The algorithm
also detects the lifetime of a variable or its use which needs spilling.
Then Restart Schedule validates the current partial schedule with the
current II. If the current partial schedule is valid then the algorithm
continues with the next node of the Priority List, otherwise II is
increased and the whole procedure is restarted with the new II.

After all the nodes of the Priority List have been scheduled,
the algorithm allocates registers for them. Then the configuration
for executing the target application on the target CGRA is generated
using the II and the mapping function f1 and f2.

6. PLACEMENT AND ROUTING

This section introduces our strategy for mapping from DFG to RRG
used in the IMIRS algorithm. We have proposed a new placement
method for CGRA. This method uses the neighborhood relations
among the functional units (FUs) and registers. We will denote both
FUs and registers as processing elements (PEs).

We can view the RRG as the given target architecture (composed
of PEs) replicated across time. The interconnections among the PEs
in a particular time and across time boundaries define regions with
incrementing distances. All the unoccupied PEs in time cycle Start
can be viewed as the PEs of first choice. The reason for this highest
priority is that those PEs can be reached from the producer/consumer
PEs in the fewest possible clock cycle. Our idea is to look for a

potential PE for a particular node from these PEs first, provided all
the shortest route edges from producers or consumers of a node u
to u are also unoccupied. All the possible PEs considering all the
predecessors/successors of the node to be placed are tried and a cost
function is evaluated for each of them. The PE with the lowest cost
is selected for placing that node. If such a PE cannot be found, we
will explore the PEs at time cycle (Start + 1) and so on. That is,
we choose the shortest paths connecting the producer PEs and the
consumer PEs.

The algorithm is outlined in Figure 4. The first for loop deter-

Procedure Mapping(DFG,RRG,f1,f2,u,Start,End){
var selected, j;
var time := -1;
var Old Cost := Max Num;
bool found := false;
for d := Start to End do {

if found break;
var Neighbors := Unoccupied PEs at time

cycle d such that for a PE all
the edges along the shortest path
from PSP (u) or PSS(u) to u
in the RRG are unoccupied

found := !Neighbors.empty();
}
if not found return false;
while (!Neighbors.empty()) do{

j := Select a neighbor from Neighbors();
Neighbors.remove(j);
var New Cost := 0;
for each v ∈ PSP (u) or PSS(u) do

New Cost+=Evaluate Cost(DFG,RRG,f1,f2,u,
v,j);

if (New cost < Old Cost) {
Old cost := New Cost;
time := d;
Selected := j;

}
}
f1 := f1 ∪ {u 7→ {(Selected, d), (Selected, d+ 1),

..., (Selected, d+ λu − 1)}};
for each v ∈ PSP (u) or PSS(u) do{

Let P be the shortest path from the last
(first) node in f1(v) to the first
(last) node in f1(u)
f2 := f2 ∪ {(v, u) 7→ P}

}
return true;
}

Fig. 4. Algorithm for Mapping from DFG to RRG.

mines the possible candidates for mapping the current node. In each
iteration unoccupied PEs at time cycle d, such that for a PE all the
edges along the shortest path from PSP(u) or PSS(u) to u in the RRG
are unoccupied, are elements in the neighbor set. Then the while
loop selects the best PE from the candidates. Each neighbor candi-
date is considered for mapping and a cost function is evaluated for
each of them considering all the elements in its PSP(u) or PSS(u).
The PE that contributes the lowest cost is selected for placing the
operation in question. Then the selected PE is marked occupied at



Selected from time cycle d to d+ λu-1. Necessary routing is done
following the available interconnection that causes optimal routing.
All the edges in RRG along the path P that corresponds to the edges
between the selected PE at d and the PE occupied by each node in
PSP(u) or PSS(u) is marked occupied.

6.1. Cost Evaluation

We use a greedy approach for evaluating the cost function of a par-
ticular placement. Our cost function consists of delay cost and inter-
connect cost. The delay cost of a node u is contributed by the time
cycle in which the nodes ∈ Pred(u) are scheduled. It is equal to
the maximum of such delays. The interconnect cost comes from the
interconnections that must be dedicated in order to route the node
from the producer PE to the consumer PE. The longer the intercon-
nections are occupied, the larger the Early Start of the successor
nodes will be. The PE with the lowest total of these costs will be
selected for executing the current node.

7. CONCLUSION AND FUTURE WORK

In this paper a novel compilation approach for parallel applications
to coarse-grained reconfigurable architectures has been proposed.
The intended application is written in HARPO/L. The input of the
compilation is the intermediate representation of the target applica-
tion in the form of DFGs using static token and a description of the
target architecture; the output is executable code. HARPO/L is first
compiled to a DFG representation. The remaining compilation steps
are a combination of three tasks: scheduling, placement and routing.

Some of the possible future works may be to implement the pro-
posed compilation method for some benchmark parallel applications
in the area of multimedia and embedded systems and to compare the
compilation result with some of the related works. We also want to
make the compiler retargetable across a wide range of target archi-
tectures.
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