
Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Direct Manipulation of Abstract Syntax Trees
Presented at NECEC 2018, St. John’s, NL

Theodore S. Norvell

Computer Engineering Research Labs, Dept. ECE, MUN

2018 November 13

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 1 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

This talk is about two things

I Keeping software simple and robust.
I Small details matter!!

I Making the user experience pleasant and efficient.
I Small details matter!!

There is nothing difficult or advanced here.
And that’s the point.
A few key decisions make the bulk of the work straightforward.
And the software robust and reusable.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 2 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Trees are everywhere.

I think that I shall never see,
a structure lovely as a tree.

With root aloft and leaves aground,
for nature’s trees are upside-down.

I Programs are trees

I File systems are trees
I Documents are trees

I HTML
I XML

How do we make a good user experience for entering and editing
trees?

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 3 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

The context

I I’ve been working on a visual programming language: PLAAY.

I Low threshold: Should be easy for beginners to use.
I High ceiling: Should be useful to professionals.

I In PLAAY syntax errors can not be made because:

I The user edits the program by directly manipulating the
abstract syntax tree.

I The editor only permits valid abstract syntax trees.
I This is good for beginners and professionals.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 4 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Trees

I A tree is consists of
I A label.

I Typically
consists of a
tag or kind
possibly some
other
information
such as a
string or a
boolean

I A sequence of 0 or
more shorter trees.

<html><head><title>Hi</title></head></

body><p>Hello world</p>

int main() { println("Hello world\n") ; }

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 5 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Valid Trees
Not all trees are valid.

I Valid trees

I Invalid trees

Trees that are valid for a given language we say are within the
abstract syntax of the language.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 6 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Editing Valid Trees

I User interface cycle:

1. t := some valid tree
2. display t to the user
3. wait for a UI event
4. attempt to make a new valid tree
5. if successful: t := the new tree ; go to 2
6. else: go to 3

I Validity is a loop invariant!

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 7 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
Three key decisions

I Make it impossible to build an invalid tree.

I Make it impossible for tree to become invalid.

I Validity is a data invariant!

I Use Options to deal with failure

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 8 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
The classes

All labels must have a boolean method that determines whether or
not it can be used with a given list of children.

interface PLabel {

public isValid(children : Array <PNode >) : boolean;

... }

An example PLabel class:

class WhileLabel implements PLabel {

public isValid(children : Array <PNode >) : boolean {

return children.length === 2 &&

children [0]. isExprNode () &&

children [1]. isExprSeqNode () ; } ... }

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 9 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
The classes

There is one class of nodes

class PNode {

protected _label: PLabel ;

protected _children:Array <PNode >;

... }

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 10 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
The truth

I Actually the PLabel and PNode classes are specializations of
generic classes called DLabel<L,N> and DNode<L,N>.

I This allows us to reuse much of the code for other
applications:

I HTML editors
I LaTeX editors
I Generic XML editors

I For the sake of this presentation, I’ll ignore the genericity.
See the paper for details.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 11 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
First key decision

It is impossible to make an invalid tree.

class PNode {

protected _label: PLabel;

protected _children:Array <PNode >;

constructor (label:PLabel ,

children:Array <PNode >) {

assert.check(label.isValid(children),

"Attempted to make invalid tree.");

this._label = label;

this._children = children.slice(); } ... }

The first line of the constructor will throw an exception if we try.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 12 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
Second key decision

It is impossible for an existing tree to become invalid.

I This is enforced by making the PNode class immutable.

I And all classes that implement PLabel must be immutable.

Consequences

I Immutability permits sharing. Trees are represented by DAGs.

I Changes are functions from trees to trees

I In short we use functional programming w.r.t. trees.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 13 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Digression on the Option type

Type Option<number> represents numbers that might be absent.
There are two kinds of option objects.

I some<number>(42) – The value 42, wrapped in a box

I none<number>() – Is a lump of coal. I.e. no number.

Think of an Option<T> object as a collection of 1 or 0 objects of
type T.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 14 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Digression on the Option type
Operations on Option<T> objects.

opt.isEmpty()

opt.first()

opt.map(f)

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 15 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Representing trees
Third key decision

Use Options

I Throwing exceptions from constructors does not promote
robustness unless we either

I ensure they are always caught and handled or
I ensure they are never thrown

I We do the latter.

Rather than directly calling PNode’s constructor we call tryMake

function tryMake(label:PLabel ,

children:Array <PNode >)

: Option <PNode > { ... }

which returns none() if the desired tree would be invalid.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 16 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

The caller of tryMake must either deal with either outcome or must
return an option.
For example:

const opt = tryMake(label , children) ;

return opt.map(newNode =>

new Selection(newNode , ...)) ;

where none().map(f) = none and some(x).map(f) = some(f(x)). So
this code returns an Option<Selection>. It passes the buck.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 17 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Another example:

const opt = paste(dragged , dropTarget) ;

opt.map(sel => updateDisplay(sel));

Here the code does nothing if the option is empty. Otherwise it
updates the display.
It is not impossible to screw up with options, for example I could
have written

const opt = paste(dragged , dropTarget) ;

update(sel.first());

Recall none().first() crashes.
Failing to catch an exception is a sin of omission.
It is easy to make and hard to spot.
But using first instead of map is a sin of commission.
Any use of first() should set off alarm bells for the design
reviewer.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 18 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Selections
Fourth key decision: Use a simple selection model.

A selection consists of

I A PNode called the root

I A path in the tree

I A number called the
anchor

I A number called the
focus

Selections are immutable

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 19 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Edits
Fifth key decision: Use a “little language” of edits.

An Edit maps each Selection to
an Option<Selection>

I An Edit object represents a
partial function

Composition of edits: If

h = f ◦ g

then

h(x) = f (x) if f (x) is empty

h(x) = g(f (x).first()) otherwise

Biased choice of edits: If

h = f ⊕ g

then

h(x) = f (x) if f (x) is not empty

h(x) = g(x) otherwise

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 20 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Edits
Assuming termination and no-side effects, edits form a simple
algebra (two laws short of a semiring)

(f ⊕ g) ⊕ h = f ⊕ (g ⊕ h)

0 ⊕ f = f

f ⊕ 0 = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)

1 ◦ f = f

f ◦ 1 = f

f ◦ (g ⊕ h) = (f ◦ g) ⊕ (f ◦ h)

0 ◦ f = 0

f ◦ 0 = 0

Where 1 is the identity edit and 0 is the edit that always fails.
Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 21 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Insert edit
— replaces children with a new sequence

⇓

⇓

is unchanged.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 22 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

A biased choice of edits
Implementing the delete key

⇓

Biased choice allows context dependence.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 23 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Templates
Templates are selections. We use them to make edits.
Example: Inserting an assignment.

⇓

⇓

Many keys are bound to replaceOrEngulf(t) =
(allPH ◦ replace(t)) ⊕ engulf(t) ⊕ replace(t) for some t.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 24 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Making an efficient UI
Prefix entry of an expression

Keystrokes Edits Display

+ replace

* replace

a replace

tab change label, tab

x replace

tab change label, tab

tab tab

* b tab y tab

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 25 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Making an efficient UI
Infix entry of an expression

Keystrokes Edits Display

a replace

enter change-label

* engulf

x replace

enter change-label

space out

+ engulf

b, enter, *, y, tab

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 26 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Making an efficient UI

Both examples take 11 keystrokes.
The equivalent in C is at least 7: a*x+b*y
In general equivalent programs are roughly the same number of
keystrokes.
A bigger example:

i n t f a c t (i n t n) {
return n==0 ? 1 : n∗ f a c t (n−1) ;

}
44 keystrokes 52 keystrokes

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 27 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Reflection on the Software Engineering

Sometimes small decisions make significant differences.
In this project, we made several key small decisions:

I Checked constructors ensure invariants are established.

I Use immutable structures to ensure invariants are not broken.

I Validity is declarative and is checked by subclasses of PLabel

that are application specific.

I Edits are not responsible for checking validity. This makes
them largely application generic.

I Options mean that most errors are caught by the type
checker. No “Oops, I forgot to check that ...”.

I Complex edits are composed from simpler ones.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 28 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Reflection on the user experience engineering.

Sometimes small decisions make significant differences.
In this project, we made several key small decisions:

I Only allow valid trees.
I One UI action can mean several things.

I We can pick the first edit to succeed.
I Or we can leave the choice to the user.

I Make the current selection easy to choose and manipulate.

I Prefer easy of use to logical simplicity

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 29 / 30

Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

Thanks to students who have worked with me on PLAAY

I Lawrence Bouzane

I Dillon Butt

I Jillian Hancock

I Kamrul Hasan

I Jessica Hillier

I Jason Howell

I Sunil Jaganathan

I Cem Kilic

I Chris Martin

I William Newhook

I Chris Rodgers

I Christopher Stanbridge

I Ajay Vijayakumar

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 30 / 30

	Introduction
	Abstract Syntax Trees
	Representing Trees
	Edits on Selections
	User experience design
	Conclusion

