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This talk is about two things

I Keeping software simple and robust.
I Small details matter!!

I Making the user experience pleasant and efficient.
I Small details matter!!

There is nothing difficult or advanced here.
And that’s the point.
A few key decisions make the bulk of the work straightforward.
And the software robust and reusable.
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Trees are everywhere.

I think that I shall never see,
a structure lovely as a tree.

With root aloft and leaves aground,
for nature’s trees are upside-down.

I Programs are trees

I File systems are trees
I Documents are trees

I HTML
I XML

How do we make a good user experience for entering and editing
trees?
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The context

I I’ve been working on a visual programming language: PLAAY.

I Low threshold: Should be easy for beginners to use.
I High ceiling: Should be useful to professionals.

I In PLAAY syntax errors can not be made because:

I The user edits the program by directly manipulating the
abstract syntax tree.

I The editor only permits valid abstract syntax trees.
I This is good for beginners and professionals.
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Trees

I A tree is consists of
I A label.

I Typically
consists of a
tag or kind
possibly some
other
information
such as a
string or a
boolean

I A sequence of 0 or
more shorter trees.

<html><head><title>Hi</title></head></

body><p>Hello world</p>

int main() { println("Hello world\n") ; }
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Valid Trees
Not all trees are valid.

I Valid trees

I Invalid trees

Trees that are valid for a given language we say are within the
abstract syntax of the language.
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Editing Valid Trees

I User interface cycle:

1. t := some valid tree
2. display t to the user
3. wait for a UI event
4. attempt to make a new valid tree
5. if successful: t := the new tree ; go to 2
6. else: go to 3

I Validity is a loop invariant!
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Representing trees
Three key decisions

I Make it impossible to build an invalid tree.

I Make it impossible for tree to become invalid.

I Validity is a data invariant!

I Use Options to deal with failure
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Representing trees
The classes

All labels must have a boolean method that determines whether or
not it can be used with a given list of children.

interface PLabel {

public isValid(children : Array <PNode >) : boolean;

... }

An example PLabel class:

class WhileLabel implements PLabel {

public isValid(children : Array <PNode >) : boolean {

return children.length === 2 &&

children [0]. isExprNode () &&

children [1]. isExprSeqNode () ; } ... }
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Representing trees
The classes

There is one class of nodes

class PNode {

protected _label: PLabel ;

protected _children:Array <PNode >;

... }
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Representing trees
The truth

I Actually the PLabel and PNode classes are specializations of
generic classes called DLabel<L,N> and DNode<L,N>.

I This allows us to reuse much of the code for other
applications:

I HTML editors
I LaTeX editors
I Generic XML editors

I For the sake of this presentation, I’ll ignore the genericity.
See the paper for details.
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Representing trees
First key decision

It is impossible to make an invalid tree.

class PNode {

protected _label: PLabel;

protected _children:Array <PNode >;

constructor ( label:PLabel ,

children:Array <PNode >) {

assert.check( label.isValid(children),

"Attempted to make invalid tree.");

this._label = label;

this._children = children.slice(); } ... }

The first line of the constructor will throw an exception if we try.
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Representing trees
Second key decision

It is impossible for an existing tree to become invalid.

I This is enforced by making the PNode class immutable.

I And all classes that implement PLabel must be immutable.

Consequences

I Immutability permits sharing. Trees are represented by DAGs.

I Changes are functions from trees to trees

I In short we use functional programming w.r.t. trees.
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Digression on the Option type

Type Option<number> represents numbers that might be absent.
There are two kinds of option objects.

I some<number>(42) – The value 42, wrapped in a box

I none<number>() – Is a lump of coal. I.e. no number.

Think of an Option<T> object as a collection of 1 or 0 objects of
type T.
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Digression on the Option type
Operations on Option<T> objects.

opt.isEmpty()

opt.first()

opt.map(f)
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Representing trees
Third key decision

Use Options

I Throwing exceptions from constructors does not promote
robustness unless we either

I ensure they are always caught and handled or
I ensure they are never thrown

I We do the latter.

Rather than directly calling PNode’s constructor we call tryMake

function tryMake( label:PLabel ,

children:Array <PNode > )

: Option <PNode > { ... }

which returns none() if the desired tree would be invalid.
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The caller of tryMake must either deal with either outcome or must
return an option.
For example:

const opt = tryMake(label , children) ;

return opt.map( newNode =>

new Selection( newNode , ... ) ) ;

where none().map(f) = none and some(x).map(f) = some( f(x)). So
this code returns an Option<Selection>. It passes the buck.
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Another example:

const opt = paste( dragged , dropTarget ) ;

opt.map(sel => updateDisplay( sel ) );

Here the code does nothing if the option is empty. Otherwise it
updates the display.
It is not impossible to screw up with options, for example I could
have written

const opt = paste( dragged , dropTarget ) ;

update( sel.first() );

Recall none().first() crashes.
Failing to catch an exception is a sin of omission.
It is easy to make and hard to spot.
But using first instead of map is a sin of commission.
Any use of first() should set off alarm bells for the design
reviewer.
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Selections
Fourth key decision: Use a simple selection model.

A selection consists of

I A PNode called the root

I A path in the tree

I A number called the
anchor

I A number called the
focus

Selections are immutable
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Edits
Fifth key decision: Use a “little language” of edits.

An Edit maps each Selection to
an Option<Selection>

I An Edit object represents a
partial function

Composition of edits: If

h = f ◦ g

then

h(x) = f (x) if f (x) is empty

h(x) = g(f (x).first()) otherwise

Biased choice of edits: If

h = f ⊕ g

then

h(x) = f (x) if f (x) is not empty

h(x) = g(x) otherwise
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Edits
Assuming termination and no-side effects, edits form a simple
algebra (two laws short of a semiring)

(f ⊕ g) ⊕ h = f ⊕ (g ⊕ h)

0 ⊕ f = f

f ⊕ 0 = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)

1 ◦ f = f

f ◦ 1 = f

f ◦ (g ⊕ h) = (f ◦ g) ⊕ (f ◦ h)

0 ◦ f = 0

f ◦ 0 = 0

Where 1 is the identity edit and 0 is the edit that always fails.
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Insert edit
— replaces children with a new sequence

⇓

⇓

is unchanged.

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 22 / 30



Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion

A biased choice of edits
Implementing the delete key

⇓

Biased choice allows context dependence.
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Templates
Templates are selections. We use them to make edits.
Example: Inserting an assignment.

⇓

⇓

Many keys are bound to replaceOrEngulf(t) =
(allPH ◦ replace(t)) ⊕ engulf(t) ⊕ replace(t) for some t.
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Making an efficient UI
Prefix entry of an expression

Keystrokes Edits Display

+ replace

* replace

a replace

tab change label, tab

x replace

tab change label, tab

tab tab

* b tab y tab
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Making an efficient UI
Infix entry of an expression

Keystrokes Edits Display

a replace

enter change-label

* engulf

x replace

enter change-label

space out

+ engulf

b, enter, *, y, tab
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Making an efficient UI

Both examples take 11 keystrokes.
The equivalent in C is at least 7: a*x+b*y
In general equivalent programs are roughly the same number of
keystrokes.
A bigger example:

i n t f a c t ( i n t n ) {
return n==0 ? 1 : n∗ f a c t (n−1) ;

}
44 keystrokes 52 keystrokes
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Reflection on the Software Engineering

Sometimes small decisions make significant differences.
In this project, we made several key small decisions:

I Checked constructors ensure invariants are established.

I Use immutable structures to ensure invariants are not broken.

I Validity is declarative and is checked by subclasses of PLabel

that are application specific.

I Edits are not responsible for checking validity. This makes
them largely application generic.

I Options mean that most errors are caught by the type
checker. No “Oops, I forgot to check that ...”.

I Complex edits are composed from simpler ones.
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Reflection on the user experience engineering.

Sometimes small decisions make significant differences.
In this project, we made several key small decisions:

I Only allow valid trees.
I One UI action can mean several things.

I We can pick the first edit to succeed.
I Or we can leave the choice to the user.

I Make the current selection easy to choose and manipulate.

I Prefer easy of use to logical simplicity

Theodore S. Norvell Computer Engineering Research Labs, Dept. ECE, MUN

Direct Manipulation of Abstract Syntax Trees 29 / 30



Introduction Abstract Syntax Trees Representing Trees Edits on Selections User experience design Conclusion
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