
Direct manipulation of abstract syntax trees

Theodore S. Norvell
Dept. Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University
theo@mun.ca

Abstract— Programming languages and document description
languages, such as HTML or LaTeX, require the user to
enter and manipulate abstract syntax trees. Usually this is
done through editing text files using tools that are generally
oblivious to the syntax of the language. This can be awkward,
frustrating, and unproductive. As a part of developing an
editor for the PLAAY programming language, I have developed
general techniques and a robust library for directly manipulating
abstract syntax trees via a combination of keyboard and mouse
actions. This ensures that the tree being edited is at all times
valid or can be extended to a valid tree. One pleasant surprise
was that entering the tree in the first place can take about as
many keystrokes as entering the tree using a text editor.

Index Terms— Trees, Graphical user interfaces, Structured
Text, Programming languages.

I. I NTRODUCTION

An abstract syntaxcan be thought of as a set of node-
labelled ordered trees. For example, in HTML, the nodes are
either text nodes or elements.1 Each text node is labelled with
a sequence of characters; each element node is labelled with a
tag (which is a string) and a sequence of attibute/value pairs.
Element nodes may have a sequence of child nodes, so the
entire document is arranged as an ordered tree. HTML has
numerous rules that restrict the tree: the root of the tree must
be an element tagged with ‘html’; this node must have exactly
2 children and they much be elements tagged with ‘head’ and
‘body’ in that order; ‘ul’ tagged elements may contain ‘li’
tagged elements, whereas ‘body’ tagged elements may not;
text nodes must have no children; and so on. In HTML and
XML terminology, trees that respect all these constraints are
termedvalid trees. In this paper I will borrow that term to
refer to trees in the abstract syntax as opposed to trees that
violate some rule of the abstract syntax.

In many applications, people need to create and revise
documents that conform to a specific abstract syntax. Exam-
ples include computer programming languages, data formats
such as JSON and YAML, markup languages such as LATEX,
HTML, numerous applications of XML such as DocBook,
and the internal representations in word processors such as
Microsoft Word or Scientific Workplace.

In this paper I present a methodology for creating inter-
active editors for such structured languages. These editors
maintain the validity of the document being edited. Much of

1This is a bit of an over simplification. For example, I am ignoring
comment nodes.

this methodology is captured in a library written in Typescript
[1] and thus can be directly reused in other structure editors.
I’ll consider both the user experience and the software design
aspects. Specific examples and experience will be drawn from
the implementation of the PLAAY programming language —
a visual programming language currently being implemented
at Memorial University.

II. T REES AND REPRESENTATIONS OF TREES

A. Mathematical trees

Suppose we have a setL. A labelled, finite, ordered tree
(henceforthtree) overL consists of a member ofL called its
label and a finite sequence of shorter trees called its children.
The height of a tree is one if the tree has no children, and
otherwise is one more than the height of its tallest child. For
any treet, we write t.label for its label andt.children for its
sequence of children.

Suppose for each label̀ there is a boolean function
`.isValid that takes a sequence of trees. A treet is valid
iff all its children are valid andt.label.valid(t.children). An
abstract syntaxcan be defined as the set containing all valid
trees whose label is a particular label called theroot label.

Our aim is to ensure that document being edited is always
valid. The editor starts with a valid tree. The basic UI cycle
is as (a) The tree is rendered in some visual form. (In the
PLAAY system we do this by translating it to HTML.) (b)
The system waits for an event such a key press or mouse
action. (c) The editor attempts to compute a new valid tree.
(d) If the attempt is successful, the tree is updated with the
new tree; back to (a). If the attempt is unsuccessful, back to
(b).

B. Representation of trees

In software, we represent labels as objects that realize an
generic interface calledDLabel.

1 i n te r face DLabel
2 <L extends DLabel<L , T>,
3 T extends DNode<L , T> > {
4 i s V a l i d : (c h i l d r e n : Array<T>)
5 => boolean ;
6 . . . }

The isValid method determines whether a valid tree can be
built using this label and the given children.

Valid trees are represented by objects of classDNode.

1 abstract class DNode
2 <L extends DLabel<L , T>,
3 T extends DNode<L , T> > {
4

5 protected l a b e l : L ;
6 protected c h i l d r e n : Array<T>;
7 . . .
8 }

In the implementation of the PLAAY programming lan-
guage we instantiate and extend these types with types
PNode andPLabel.

1 i n te r face PLabel
2 extends DLabel<PLabel , PNode> { . . . }
3 class PNode
4 extends DNode<PLabel , PNode> { . . . }

Henceforth, I’ll speak ofPNodes andPLabels, mostly to
save space and to allow concrete examples.2 Most of what I
say about them will apply equally to any subtypes ofDLabel
andDNode.

Objects of typePNode andPLabel are immutable, mean-
ing that the values of their fields can not change. Making these
objects immutable helps make the software robust and also
allows node and label objects to be shared.To use immutable
types is the first important design decision.

The constructor forPNode checks validity and throws an
exception if (a representation of a) a valid tree can not be
built.

1 constructor (l a b e l : PLabel ,
2 c h i l d r e n : Array<PNode>) {
3 asser t . check (l a b e l . i s V a l i d (c h i l d r e n) ,
4 "Attempted to...") ;
5 th i s . l a b e l = l a b e l ;
6 th i s . c h i l d r e n = c h i l d r e n . s l i c e () ; }

Thus only valid trees can be built and, because of im-
mutability, representations can never change to represent
invalid trees. Validity is an invariant of classPNode. To
ensure validity on construction is the second important design
decision.

However, throwing exceptions is not the road to robust soft-
ware. Programmers have a habit of ignoring that exceptions
may be thrown, assuming the exception will be caught at a
higher level, or assuming that exceptions have been caught as
a lower level. Thus, when a tree needs to be made, we call
the function

1 funct ion tryMake (l a b e l : PLabel ,
2 c h i l d r e n : Array<PNode>)
3 : Option<PNode> { . . . }

This function returns an object of typeOption<PNode>
. There are two kinds of option objects:Some<PNode>

2In some cases this will lead me to tell white lies, for example the
constructor code shown forPNode is in fact in DNode and is generic.
The actual constructor forPNode simply calls the generic constructor of
the super class.

Fig. 1. Positions in a tree

Fig. 2. Display of selections

objects wrap aPNode; None<PNode> objects contain no
extra information. We can think of option objects as being
lists of length 0 or 1. Of course thetryMake function returns
a Some<PNode> object if the validity check is passed and
a None<PNode> object otherwise. The use oftryMake
forces the client programmer to either deal with the possibility
of failure or to reflect that possibility in the signatures of
their methods. Objects of typeOption support the monad
operations ofmap and bind [7]. Throughout our system,
code that deals with options generally does so using these
operations.To use the option type consistently is the third
important design decision.

C. Selections

Because of sharing, several tree nodes may be represented
by onePNode. To identify a tree node, we use a rootPNode
and a list of numbers: the empty list[] represents the root,[0]
represents the first child of the root; the list[4, 2] represents
the third child of the fifth child of the root; and so on. Each
tree node withn children is associated withn + 1 positions
numbered0, 1, ... , n. The first n are to the left of the
corresponding child; the last is to the right of the last child.
In the case of a node with no children, its sole position is
below it. Fig 1 shows a tree and its positions.

A selectionconsists of aPNode called its root, a path
identifying a tree node, and two positions under that node,
called theanchor and focus. When the anchor and focus
are equal, the selection identifies a position in the tree
and we say the selection is empty. When the anchor and
focus are not equal, we say that the nodes between the two
positions are the selected nodes.3 Note that the root can
not be selected. In the PLAAY system, empty selections are

3In most cases it doesn’t matter whether the anchor or the focus is bigger.
Usually the anchor is the smaller. But in some cases they may be the other
way around.

presented to the user by displaying a small grey rectangle
at the selected position; nonempty selections are shown by
giving the selected nodes grey backgrounds. Fig. 2 shows
how the PLAAY system displays selections of sizes 0, 1, and
2. Selections are represented in the software by immutable
objects of classSelection.

A nice benefit of immutability is that undo and redo in the
PLAAY editor is trivially implemented by having two stacks
of selections in addition to the current selection.

III. M ODIFYING TREES

A. Abstract Edits

An edit is a partial function with the same source and target
type.

1 i n te r face Edi t<A> {
2 app lyEd i t : (a :A) => Option<A> ;
3 canApply : (a :A) => boolean ; }

We require canApply(a) iff not applyEdit(a). isEmpty();
that is, thecanApply method simply indicates whether the
edit will succeed. Edits can be composed sequentially —
compose(x,y) creates an edit that first appliesx and theny to
the result— or alternatively —alt ([x,y]) applies the first edit
that will succeed. This allows us to build complex edits from
simple elements. We have a domain specific language (DSL)
of edits that uses compose and alt as its compound operators.
Alt and compose almost form a semiring except that alt is
not commutative and we don’t have right associativity, i.e.,

compose(alt([x, y], z) = alt([compose(x, z), compose(y, z)])

is not true in general. Interestingly the lack of these laws
makes the DSL more expressive.

For the purposes of this paper, the onlyEdit objects that
we use areEdit<Selection> objects.

B. Concrete Edits

We define several realizations ofEdit<Selection>.
One of the most useful is theInsertChildrenEdit. This

edit is constructed from an array of trees. The edit replaces
the selected children (if any) with the sequence of trees in the
array. These edits can be used to delete nodes (if the sequence
is empty), insert nodes (if the selection is empty) or replace
one or more nodes with one or more trees (if neither is empty).
This edit will fail if the resulting tree would be invalid.

Consider the implementation of the delete key. In the
PLAAY language deleting a node may lead to an invalid tree.
For example, nodes representing ‘while’ expressions must
have exactly 2 children; the first must be an expression node
of some sort; the second must be an expression sequence
node. If the user selects the first node and presses the delete
key, the node can not simply be deleted. Instead we would
want to replace it with an expression place-holder node, which
is a node that indicates to the user an expression at that
spot is required. The implementation of the delete key is
thus implemented by creating a choice ofInsertChildrenEdit
edits, each created with a different array of trees to replace

Fig. 3. Right arrow

Fig. 4. Space bar

with. Given an arraychoices of arrays of trees, the require
edit is computed by

1 a l t (choices .map((choice) =>
2 new I n s e r t C h i l d r e n E d i t (choice)))

Two closely related edits are the swap edit and the move
edit. The swap edit exchanges the nodes between two se-
lections. The move edit moves nodes from one selection to
another, while replacing the source nodes with nodes from
an array, similar to delete. Both these edits require that the
two selections share the same root and create a new tree
that differs from the old in two places. The code to do
this is quite involved, but is shared by the swap and move
edits. Note that we can not compose these edits out of two
InsertChildrenEdits edits because the intermediate tree may
be invalid. Swap and move are used together with the paste
edit, which leaves the source selection alone, are used in
implementing drag and drop operation between nodes of the
tree. Such a drag and drop action could be interpreted as a
paste, a move, or a swap. The PLAAY editor applies all three
edits: if only one succeeds, that one is applied. If more than
one succeeds, one is chosen, but a pop-up menu appears,
giving the user a chance to pick a different interpretation.
Immutability makes this sort of thing easy.

A number of edits only ‘change’ the path, anchor, and
focus, not the rootFor example the various arrow keys are
implemented by such edits. Fig. 3 shows the effect of the
right arrow. The positions under the 3 andx nodes are skipped
because no nodes can be inserted there. Two edits that will

Fig. 5. Tabbing

theo
Text Box
distributivity

theo
Cross-Out

Fig. 6. Closing a label

Fig. 7. Engulf

be important in the next section are theOutEdit and the
TabForwardEdit. The first selects the parent of the selection
if possible; in PLAAY this edit is bound to the space bar; see
Fig. 4. The second searches to the right checking selections of
size one or zero until either a place-holder node is selected or
a position where a node can be inserted is selected; positions
that are next to place holders are skipped. Fig. 5 shows a
sequence ofTabForwardEdits being applied. If the second
child of the + node were not a place-holder, the first tab
would advance the anchor to 1 and the second would move
advance both the anchor and focus to 2; this is because +
nodes can have more than 2 children.

Some edits only affect the labels of the selected nodes.
For example there are edits to change the string associated
with a label. Since labels are immutable, this means a new
label is created and the tree is modified to use the new label.
Some labels are capable of being in an open state. In PLAAY
this true of labels representing identifiers and numbers. Open
labels are displayed as text fields that can be edited. When
the user has finished editing the field (indicated by an enter
key or a tab key) the label is changed to a closed label with a
possibly new string. Fig. 6 shows what happens when a label
is closed by an enter versus a tab key in the PLAAY editor.

A very useful edit is called anengulf edit. An engulf edit is
based on a selection called a templatet. Applied to a selection
s, the selection edit works in four steps. First, the selected
nodes ofs are used to replace the selected nodes int to
form a selectiont′. Next, the selected nodes ofs are replaced
with the root of t′. Finally, the path, anchor and focus are
adjusted so that the selection is empty and corresponds to the
position to the right of the nodes that moved. Fig. 7 shows
an example. From left to right we have the orginal selection,
the template and the result. Engulf is usually followed by
an implicit tab if need to make a sensible selection. In the
example in the figure, since assignment (:=) nodes can only
have two children, the selection would be moved forward to

Keystrokes Edits Display

+ replace

* replace

a replace

tab change label,tab

x replace

tab change label,tab

tab tab

*,b,tab,y,tab

TABLE I

PREFIX ENTRY:

select the place-holder.
Engulf is often alternated with areplace edit, which is

simply an InsertChildrenEdit using the template as the
source of new nodes composed with aTabForwardEdit edit.
A replace-or-engulf edit gives a choice of either an engulf
or a replace. The replace is preferred when the selection is
a place-holder. Otherwise engulf is preferred. All these edits
can be extended to use a choice of templates. Replace-or-
engulf edits are used in the PLAAY editor mostly for two
purposes: Key press events are bound to replace-or-engulf
edits. For example, the ‘:’ key is bound to a replace-or-
engulf edit that uses the template shown in the middle of
Fig. 7. Secondly, palette items are bound to replace-or-engulf
edits. Palette items may be dragged and dropped on the tree
or clicked on, which means they are applied to the current
selection.

IV. EFFICIENT ENTRY OF TREES

In this section, I’ll focus on the entry of trees. We will see
that entering code in PLAAY takes about as many keystrokes
as entering equivalent code using a programmer’s text editor.

The binding of actions to keys and palette items is designed
to facilitate either prefix or infix entry of expressions. Prefix
entry means that the tree is entered top down. Infix entry
means that the first child of a node is entered before the node.
Infix entry is only possible when the parent and the first child
share the same syntactic role, e.g., if both are expressions or
both are types.

Table I shows prefix entry of a simple expression, assuming
the selection is initially empty. This takes 12 keystrokes as
opposed to 7 in C. Most of the overhead comes from the
need to explicitly terminate identifiers. With longer identifiers,
the ratio would be closer to one. It should be noted that in
PLAAY, the expression corresponding to(a + x) ∗ (b + y)
would also require 12 keystrokes, since the abstract syntax of
PLAAY does not include parentheses.

Keystrokes Edits Display

a replace

enter change-label

* engulf

x replace

enter change-label

space out

+ engulf

b, enter, *, y,tab

TABLE II

INFIX ENTRY:

Table II shows infix entry of the same expression. Again
12 keystrokes are needed. The use of enter, rather than tab to
terminate entry into the text field leaves the variable selected.
The space-bar is used to select the enclosing expression.

Expressions can also be entered by dragging and dropping
palette items or by clicking on them; this would be suitable for
tablet computers lacking keyboards or for beginner program-
mers not familiar with the keyboard short cuts. The editor
currently has two palettes: one for expressions including 19
items, and one for types, including 15 items. On a tablet,
the example expression can be entered with 7 drag-and-drop
actions and 7 entries on a (virtual) keyboard. Entering by
clicking (or tapping) on the palette items is similar, but will
require some extra taps to set the selection. With both the
drag-and-drop and the click-on-palette-item methods, the tree
can be built in either a prefix or infix order.

This particular expression has no repeated identifiers, but
it should be noted that, once an identifier has been entered,
we can use drag-and-drop to copy it to other places in the
tree when it is needed.

As a longer example, the factorial function definition shown
in Fig. 8 takes 44 keystrokes to enter. A roughly comparable
function definition takes 45 keystrokes in C or Java with no
unneeded whitespace:

1 i n t f a c t (i n t n) { return n==0?1:n∗ f a c t (n−1) ;}

V. RELATED WORK

Structure editors go back to the 1970s. Early work on
generating structure editors based on abstract syntaxes include
the MENTOR system [3], the GANDALF project, with its
ALOE editor system [4] the Synthesizer Generator [5], and
the Centaur system [2]. Visual languages have always de-
manded some form of structural editing. The Scratch language
is one recent example [6].

In the area of document editing, structure editing is used in
WYSIWYG (what you see is what you get) and WYSIWYM
(what you see is what you mean) editors.

Fig. 8. Factorial function

VI. CONCLUSION

As can be seen from the previous section, structure editors
are hardly new. The contributions of this paper, then are in
the mechanics of programming such an editor, in some of
the user interface considerations, and in how the two interact.
More generally it serves as an example of achieving robust,
flexible, and modular code through immutable structures and
functional programming concepts such as the option monad
and an embedded domain specific language.

Future work will include using the system described for
other languages.

ACKNOWLEDGEMENTS

I’d like to thank the following students who have worked
on the PLAAY system: Lawrence Bouzane, Dillon Butt,
Jillian Hancock, Jessica Hillier, Jason Howell, Cem Kilic,
Chris Martin, William Newhook, Chris Rodgers, Christopher
Stanbridge, Ajay Vijayakumar, and Kamrule Hasan. Sunil
Jaganathan deserves special mention for using the DNode
system to implement another visual language.

REFERENCES

[1] Gavin Bierman, Mart́ı Abadi, and Masd Torgerson. Understanding
typescript. InECOOP 2014—Object-Oriented Programming, 2014.

[2] P. Borras, D. Cĺement, Th. Despeyroux, J Incerpi, G. Khan, B Lang, and
V. Pascual. Centaur: The system. In3rd Annual Symposium on Software
Development Environments (SIGSOFT’88). ACM, 1988.

[3] Véronique Donzeau-Gouge, Gérard Huet, Bernard Lang, and Gilles
Kahn. Programming environments based on structured editors: the
mentor experience. Rapports de Recherche 26, INRIA, July 1980.

[4] A. Nico Habbermann and David Notkin. Gandalf: Software develop-
ment environments.IEEE Transactions on Software Engineering, SE-
12(12):1117–1127, December 1986.

[5] Thomas W. Reps and Tim Teitelbaum.The Synthesizer Generator:
A System for Constructing Language-based Editors. Springer-Verlag,
Berlin, Heidelberg, 1989.

[6] Mitchel Resnick, John Maloney, Andrés Monroy-Herńandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch: pro-
gramming for all.Commun. ACM, 52(11):60–67, November 2009.

[7] Philip Wadler. The essence of functional programming. InProceed-
ings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’92, pages 1–14, New York, NY, USA,
1992. ACM.

