
Information visualization with JHigraph — a

progress report
This is a revised and up-dated version.

Theodore S. Norvell and Michael Bruce-Lockhart

Computer Engineering

Memorial University of Newfoundland

Email: theo@mun.ca mpbl@mun.ca

Abstract—Imagine a graph. Now imagine arranging its nodes
in some sort of hierarchy. Now think of a forest and imagine
adding edges between various pairs of nodes of the forest. Either
way you get the same sort of thing: a higraph. A higraph is a
set of nodes that are both linked by edges and arranged in a
hierarchy. In 1987, David Harel introduced higraphs as a visual
formalism, initially for system modelling. Higraphs are suitable
for modelling many kinds of data: computer programs, linked
storage structures, class diagrams, mind maps, system models,
state charts, data-flow graphs. In this paper we discuss a new
software library for information visualization and manipulation
inspired by and based on higraphs. Rather than committing to a
single visual formalism, we separate visualization concerns from
modelling concerns. Each application can depict hierarchy and
edges in its own way.

CONTENTS

I Introduction 1

II Higraphs 1

II-A Definitions 1

II-B Applications 2

III JHigraph 3

III-A Models 4

III-B Views 4

III-C Layout Managers and Transitions 5

III-D Input 5

IV Conclusions and further work 5

References 5

I. INTRODUCTION

Imagine a graph. Now imagine arranging its nodes in some

sort of hierarchy. Now think of a forest and imagine adding

edges between various pairs of nodes of the forest. Either way

you get the same sort of thing: a higraph. A higraph is a

set of nodes that are both linked by edges and arranged in a

hierarchy. In [1] and [2], David Harel introduced higraphs as a

visual formalism, initially for system modelling. In this paper

we discuss a new software library for information visualization

and manipulation inspired by and based on higraphs. Rather

than committing to a single visual formalism, we separate

visualization concerns from modelling concerns. Each appli-

cation can depict hierarchy and linkages in its own way.

Section II give the mathematical definitions and gives ex-

amples of things that can be modelled with higraphs. Section

III presents our software system. Finally section IV gives

conclusions and presents ideas for further work.

II. HIGRAPHS

A. Definitions

A directed graph or digraph (N,E,←−,−→) consists of a set

of nodes N , a set of edges E, and source and target functions

(←− and −→) such that E ⊆ dom ←− ∩ dom−→ and, for all

e ∈ E, ←−e ,−→e ∈ N .

A labelled digraph (N,E,←−,−→, λnode, λedge) is a directed

graph with the addition of two label functions such that N ⊆
domλnode and E ⊆ domλedge.

An ordered forest (N, ↓) is a set of nodes N and a children

of function ↓. We think of ↓ as a function from nodes to

sequences of nodes. We write ↓ as a postfix operator so that

a ↓ is the sequence of children for node a and a ↓ i is item i
in that sequence. We require four conditions on (N, ↓) for it

to be an ordered forest; the first three follow.

• For all a ∈ N , a↓ is a finite or infinite sequence of

nodes indexed from 0. Formally: N ⊆ dom(↓) and for

all a ∈ N , either dom (a ↓) = N or there is a j ∈ N,

such that dom(a↓) = {i ∈ N | 0 ≤ i < j}; furthermore,

for all a ∈ N and i ∈ dom(a ↓), a ↓ i ∈ N .

• Each node has at most one parent and the sequences

contain no duplicates. Formally: for all a, b ∈ N , and

for all i, j ∈ N, if a ↓ i = b ↓ j then a = b and i = j.
• No node is an ancestor of itself. (The term ‘ancestor’ will

be defined shortly.)

For a, b ∈ N , if there is an i such that a ↓ i = b, then a is the

parent of b and b is a child of a; a node with no children is

called a leaf; a node with no parent is called a root. If there is

a finite sequence of 1 or more indices i0, i1, · · · , in ∈ N such

that a ↓ i0 ↓ i1 ↓ · · · ↓ in = b then a is an ancestor of b and b
is a descendent of a. A root together with all its descendents

is called an tree. Each node is in at most one tree. I’ll add one

final condition for being an ordered forests: each node must

Target

Self Desc. Anc. Other

S Self Loop Down Out Out

r Desc. Up Internal Deep out Deep out

c Anc. In Deep in Other Other

. Other In Deep in Other Other

TABLE I

CLASSIFICATION OF EDGES

be in a tree; this restriction is redundant if N is finite.1

A hierarchical graph or higraph is a structure

(N,E,←−,−→, ↓) such that (N,E,←−,−→) is a digraph

and (N, ↓) is an ordered forest. A labelled higraph

is a structure (N,E,←−,−→, ↓, λnode, λedge) such that

(N,E,←−,−→, λnode, λedge) is a labelled digraph and (N, ↓)
is an ordered forest. You can think of a higraph either as

being a forest augmented by edges or as being a digraph

augmented with hierarchy.

With respect to a node a, each node b can be classified as

self (i.e. equal to a), descendent, ancestor, or other. Based on

this classification we can classify an edge e with respect to

a node a, based on the classification of e’s source and target

with respect to a. This classification is shown in Table I.

Given a higraph G = (N,E,←−,−→, ↓) a downward closed

set of nodes is a subset S of N such that

a ∈ S ∧ a is an ancestor of b⇒ b ∈ S, for all a, b ∈ N

A downward closed subgraph of higraph G is a pair (G,S)
where S is a downward closed subset of N . Any downward

closed subgraph is uniquely defined by its set of top nodes,

which are those nodes that are in S but that don’t have a

parent in S, i.e., that are either roots or that have a parent that

is not in S. Let ES = {e | ←−e ,−→e ∈ S} then (S,ES ,
←−,−→, ↓)

is itself a higraph. For the rest of this paper, the only subgraphs

of interest are those that are downward closed and from here

on we’ll use “subgraph” and “downward closed subgraph”

synonymously.2 With respect to a subgraph (G,S), an edge

e is internal iff ←−e ,−→e ∈ S, entering iff ←−e /∈ S and −→e ∈ S
leaving iff ←−e ∈ S and −→e /∈ S, and unrelated iff ←−e ,−→e /∈ S.

One particular subgraph is (G,N), which is termed the

whole graph. Thus each higraph can be seen as a subgraph

and each subgraph can be seen as a higraph. From a software

engineering point of view, this circularity raises the question

which class should inherit from which. We chose Higraph as

the base interface with interfaces WholeGraph and Subgraph

both extending from it.

1To see why it is not redundant in the infinite case, consider the set of

integers Z as the node set; each node has one descendant which is its numerical

successor. Now the all restrictions are satisfied except for the latest. There is

no root, so no node is in a tree. On the other hand, consider N as the node

set; again each node has one descendant which is its successor. This forest

has a single tree and satisfies all restrictions. In particular, each node is either

0 (the root) or a descendant of 0.
2One could conceive of subgraphs that are not downward closed, but in

such cases the same “child of” function could not be used. For example we

could take an arbitrary subset S of N and use a modified ‘child of’ function

that omits from each node’s child sequence any node not in S.

We say that an edge e is governed by a node v if e is Up,

Down, or Internal with respect to v but not Up, Down, or

Internal with respect to any descendant of v. A loop e, i.e. an

edge that has the same source and target, is governed by the

parent of its endpoint, if there is such a parent. Any other edge

e, i.e. a nonloop is governed by the least common anscestor of

its source and target, if such exists. Thus each edge is governed

by at most one node. Edges that aren’t governed by any node

are said to be governed by the higraph. These will be edges

that are either loops on roots or that run between distinct trees

of the forest. In the extreme case where no node has a child

(i.e. we have an ordinary digraph), all edges are governed by

the higraph. An edge e in ES is said to be governed by the

subgraph (G,S) if it is not governed by any node in S; these

will be edges that are either loops on the top nodes of (G,S)
or that run between trees defined by two different top nodes

of (G,S).

B. Applications

Structures that can be modelled by higraphs are common

in computing. Anything that can be modeled by a graph, a

tree, or a forest can be modelled by a higraph. Here are some

examples that use both hierarchy and edges. (0) Consider a

set of HTML documents. Each is an ordered tree of HTML

elements, text nodes, comments, etc. Certain of the elements

(in particular those with A and IMG tags) link to elements

of the same or other trees. These links are directed edges.

(1) Consider a snapshot of the objects in an execution of a C

program. Each object is a node. Structures (structs) and arrays

are parents and induce a hierarchy. Pointer objects are the

sources of edges that link nodes. (2) In a file system, drives

are roots and directories and drives are the parents of files

and directories. Symbolic links are modelled by edges.3 (3)

Consider a computer program written in a structured language

such as C. Each subroutine is a tree of statements. Go-

to statements provide links (edges) between statements. We

could also use edges to provide links from nodes representing

declarations to the nodes representing the uses of named

entities. (4) Almost any engineered product can be viewed

hierarchically, for example an automobile has an engine, which

has cylinders, which have spark plugs. At the same time there

are connections that pass through hierarchical boundaries. E.g.

the electrical system must connect the spark plugs. Similarly a

program may consist of a hierarchy of modules, but we might

have a call from one module to a distant cousin. (5) Data flow

graphs in the ProGraph [3] language can be seen as higraphs

in which each ‘frame’ is a node. ‘In’ and ‘out’ edges connect

the frame to its child nodes. (6) A project plan has tasks

divided into subtasks. Edges connect tasks that are dependent.

(7) Statecharts, as found in UML, are higraphs [4]. Each state,

pseudostate, and region is a node. Each state is parent to its

3Unix file systems don’t quite fit this model because a file (other than a

directory) in unix may be hard linked into more than one directory. For unix

we could model hard links to nondirectory files by edges. This way each file

(other than a directory) is both a root and a leaf. The . and .. links in unix

are also nonhierarchical and would have to be modelled by edges.

regions and each region is parent to its substates. Transitions

are edges. See Figure 1 In fact, historically, statecharts [1]

came first and higraphs were invented by David Harel [2]

later to help formalize state-charts. Harel’s formalization is

a bit different in detail from that presented above.4

Fig. 1. A statechart.

III. JHIGRAPH

Our interest is in information visualization and manipula-

tion. A number of projects that we were working on all had

similar needs and it was decided to create one underlying

visualization package, based on higraphs. The projects were

as follows.

Fig. 2. A command in the PLAY language

• In the Teaching Machine [5] we were working on pro-

grammer defined visualization (PDV) of data. For PDV

the programmer adds statements to their code construct-

ing a visualization of the programs data state. This allows

the Teaching Machine to show more abstract views of

program state than can be automatically generated. For

example, if one is using an adjacency matrix to represent

a graph, the TM can automatically generate a visual-

ization of the matrix, but to display the graph requires

4Firstly, Harel’s formalism divides the children of a node among a number

(1 or more) of partitions. A node a with a child b in partition x, in a Harel

higraph, can be modelled in our formalism by a node a with a child x, which

has b as a child.

Secondly, Harel’s original formalism does not rule out that a node may

have multiple parents. A node with multiple parents is not easily modeled

with our formalism.

some explicit instruction. Using PDV the programmer

adds instructions to the program to build a visualization

of the graph and to change the visualization of the graph

each time the matrix is changed.

• Both the TM and the PLAY programming system display

the data state of the program as a graph with pointers

linking together objects.

• In the PLAY programming system, the program is repre-

sented as an abstract syntax tree, presented to the user

using a boxes-in-boxes visualization. See Fig 2. The

programmer edits their program by direct manipulation

(e.g. drag and drop) of the tree. For example to add a new

command to a subroutine, the programmer drags from a

palette of statement types and drops a new box within

the box representing the subroutine’s body.

• Other systems in early stages include a system for editing

and executing state-charts and a system for editing regular

expressions presented as “railroad diagrams”.

The first two of these only display data. The last two

demand that the user may manipulate (e.g. via the mouse or

a touch interface) the visual representation causing changes to

the underlying data structure.

Based on the needs of these projects and the assumption

that others would have similar needs, we started the JHigraph

project. JHigraph provides the basic models, views, and con-

trollers needed to build various GUI systems based on higraph

models. Because the Teaching Machine and PLAY projects are

written in Java, we chose Java as an implementation language.

Initially JHigraph is layered above the Swing GUI library, but

it is intended that it be portable so that it can be used with

SWT and perhaps other libraries.

Fig. 3. Package structure of a JHigraph application.

The structure of a JHigraph based application is shown

in Fig 4. At the right are the models, views and controllers

provided by JHgraph. These classes and interfaces are generic.

The application provides specializations of these classes and

implements any abstract methods in order to obtain classes

that are specific and concrete. These classes are shown at the

left of Fig 4. The system is thus layered along two orthogonal

axes. Views and controllers depend on models, but not the

other way around; and application specific classes depend on

the generic classes, but not the other way around.

A. Models

JHigraph provides interfaces for nodes, edges, higraphs,

whole graphs, and subgraphs. For example the interface

WholeGraph represents mutable objects whose state repre-

sents a higraph. WholeGraph objects also acts as a factory

objects for creating objects representing nodes, edges, and

subgraphs. Node objects are initially created as roots of the

higraph. Operations on node objects include

• delete: The node represented by the object and all

its descendents are removed from the higraph and all

subgraphs, as are all edges that have such a node as source

or target. After deletion, none of these objects can be used

for anything.

• duplicate: The node and all its descendents and all

edges that have such a node as its source or target are

duplicated. The duplicate of the node becomes a new root.

• insertChild: Moves another node to become a child of

this node.

• replace: Replaces this node with another.

• detach: Make a node become a root.

• permuteChildren: Rearranges the children of a node.

Node objects carry a label object (a ‘payload’ in the terminol-

ogy of the system) which may be replaced.

Subgraph objects are mutable objects whose state is a

subgraph. We can add and remove nodes from each subgraph

object, subject to the constraint that each subgraph remains

downward closed. This constraint is enforced by limiting the

mutator operations on subgraph objects to (0) adding node

not in the subgraph as a top node and (1) removing a top

node. Subgraph objects are useful for representing parts of

the whole graph. For example in PLAY we might represent

each subroutine with its own subgraph. Nodes “cut” by the

user can not be deleted (otherwise there could be no “paste”

operation), rather they are moved to a cut-buffer subgraph.

Similarly a trash-can for nodes would be represented by a

subgraph.

Edge objects are very simple: they can be deleted; their

source and target can be changed; their payload (i.e., label)

can be changed; and that is about it.

The notion of well formedness is important in a number of

applications. Some higraphs are well formed, while others,

maybe, are not. For example, in the case of a higraph of

HTML elements, we might require that a node representing

a TR element must have as children only nodes representing

TH or TD elements. In the PLAY language there are similar

restrictions, e.g., ‘while commands’ must have two children:

an expression and a block. We would like to maintain as an

invariant of each higraph that it is well formed, as a precon-

dition to each mutator, there is a check that the operation will

leave the higraph well formed. For that reason, each mutator

is accompanied by a query that asks whether the mutator

would succeed or fail. For example there is a canInsertChild

query that should be called before a call to insertChild. These

queries are particularly useful for drag and drop operations.

Suppose the user drags a depiction of a node from one place

in a depiction of the graph to another; one can use the queries

to feed back (e.g. by changing the mouse pointer shape) to the

user whether a drop at the current mouse location will succeed

or fail.

The application may provide its own implementations of

these interfaces. We provide two implementations that can be

used as base classes for the application’s implementations.

The first implementation has no notion of well-formedness.

It returns true for all “can” queries, except where there are

purely structural reasons for returning false — for example

making a node its own child. The second implementation,

based on the first, has a notion of well-formedness based on

each node having a tag and well formedness depending on the

sequence of tags of each node’s children. This is very similar

to the notion of well-formedness in XML. The routine that

determines whether a sequence of tags is acceptable is left

abstract and can be filled in at the application specific level of

the model.

B. Views

Each node, edge, whole graph, and subgraph object can be

depicted graphically on a computer’s screen. Indeed we may

want multiple depictions at the same time — for example

to support a zoomed view and an overview. To represent

these depictions we use view objects. Each view object is

responsible for maintaining information about a depiction,

such as where it is on the screen, what colour it is, what shape,

whether it is collapsed, etc., and is capable of repainting the

depiction as needed. Each WholeGraph or Subgraph object

can have associated to it zero or more HigraphView objects.

For each HigraphView hv and each node a in its higraph, there

is at most one view object va,hv . See Fig 4.

Fig. 4. View and model classes.

Assuming they all exist, the node views, for any higraph

view hv, thus form a forest such that va,hv is parent to vb,hv if

a is parent to b. Being able to navigate this forest is important,

for example for layout or repainting. However, explicitly

linking the views together would parallel the structure already

supported by the model and create the problem of keeping

the two parallel forest structures synchronized. Instead views

are implicitly linked via their model objects. Each node view

va,hv can ask its model object, a node object, for that object’s

children and then can ask each child node object b for its

view relative to the same higraph view, i.e., for vb,hv . If such

a view does not exist, then it is created on the fly using a

factory object associated with the higraph view. Consider what

happens when a node b is created and then added under a

parent a. The next time the views are refreshed, a view va,hv
of node a will at some point ask for all views of a’s children

associated to the same higraph view hv. This will cause a new

view vb,hv to be created. Similarly if a node b leaves a higraph

with view hv, the view vb,hv will become irretrievable, for the

time being.

A similar mechanism is used to implicitly link node views

and edge views: if ←−e = a or −→e = a, then ve,hv and va,hv
should be able to find each other via their model objects.

In addition to views for higraphs, nodes, and edges, we

also have views corresponding to drop zones (places where

nodes and other things can be dropped), labels, and connection

points. These additional views are linked directly to their

parents, typically node or edge views.

C. Layout Managers and Transitions

Layout managers are associated with higraph views and

node views. These managers are responsible for placing all

views in the view tree beneath the associated view. The layout

manager for a higraph view will place the views of the top

nodes. The layout manager of a node view places its child

node views and so forth. If an edge is governed by a node

in the higraph, it’s view is placed by the layout manager for

that node’s view; otherwise, if the edge is governed by the

subgraph or the whole graph, it’s view is placed by the layout

manager for the HigraphView.

The job of the layout manager is to find the next position

and size for each node view (and other views, such as drop

zones) and routes for its edge views. After each round of

laying out the views then make an animated transition to their

new positions. Views that have become invisible, shrink to

nothingness; views that have become visible expand to their

new size. These animated transitions reenforce the continuity

of identity between the original and the new depictions of each

view.

D. Input

The handling of input events is highly application depen-

dent. We provide an interface HigraphEventObserver that

the application may implement, if it needs to. Events sent to

the application via this interface include: clickedOn (when the

mouse is clicked over a subgraph view), mouseOver (when

the mouse moves over a subgraph view), importData (when

a drag-and-drop operation ends over the subgraph view), and

others. Since views within a subgraph view may overlap in

extent —consider a node whose children are drawn within its

bounding box, or an edge that passes in front of a node—,

for each event, the application is passed a list of views that

intersect the mouse position, in reverse draw order. It is up to

the application to decide which view is the intended recipient

of the event, although usually it is the first on the list that the

event could affect.

IV. CONCLUSIONS AND FURTHER WORK

The work represents a rigorous separation of concerns

between model and view. Mathematical formalization of the

model was crucial to creating a clean model.

Although there is still work to be done on JHigraph, we are

reaching a near a release of programmer defined visualizations

for the Teaching Machine. Animated transitions are the main

piece required to be done to support this. Work on the PLAY

system —with its higher demands for input event processing—

is continuing as time permits.

REFERENCES

[1] D. Harel, “Statecharts: a visual formalism for complex systems,” Science

of Computer Programming, vol. 8, pp. 231–274, June 1987.

[2] D. Harel, “On visual formalisms,” Commun. ACM, vol. 31, pp. 514–530,

May 1988.

[3] P. T. Cox, F. R. Giles, and T. Pietrzykowski, “Prograph: A step towards

liberating programming from textual conditioning,” in IEEE Workshop on

Visual Languages, pp. 150–156, 1989.

[4] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language

Reference Manual. Addison-Wesley Professional, 2nd ed., 2010.

[5] T. S. Norvell and M. P. Bruce-Lockhart, “Taking the hood off the

computer: Program animation with the teaching machine,” in Canadian

Electrical and Computer Engineering Conference, May 2000.

