Mapping Applications to Coarse-Grain Reconfigurable

Architectures

Mohammed Ashraful Alam Tuhin *f

ashraful@cs.mun.ca

Theodore S. Norvell
theo@engr.mun.ca

October 22, 2006

Abstract

Coarse-grained reconfigurable architectures
(CGRAs) are capable of achieving both goals
of high performance and flexibility. CGRAs not
only improve performance by exploiting the features
of repetitive computations, but also can adapt
to diverse computations by dynamically changing
configurations of an array of its internal processing
elements (PEs) and their interconnections. Many
CGRAs have been developed recently as pro-
grammable coprocessors, minimizing the overhead of
the central processor in many computation-intensive
applications. They act as co-processors for acceler-
ating computation-intensive portions of embedded
system applications. System designers are attracted
to CGRAs because they bridge the gap between
Application Specific Integrated Circuits (ASICs)
and microprocessors by providing the high perfor-
mance of ASICs with flexibility of reconfiguration
of fine-grained FPGAs. Some of the application
areas of these architectures are image processing,
DSP, encryption, pattern recognition, and other
multimedia applications. This paper surveys the
methods of compiling applications to coarse-grained
reconfigurable architectures.

1 Background

Reconfigurable computing systems represent an in-
termediate approach between application specific in-
tegrated circuits (ASICs) and general-purpose pro-
cessors. The idea driving reconfigurable computing
is to avoid the von Neumann bottleneck (the

*Department of Computer Science, Memorial University of
Newfoundland, St. John’s, NL, Canada A1B 3X5.

fSupported by NSERC.

fFaculty of Engineering and Applied Science, Memorial
University of Newfoundland, St. John’s, NL, Canada Al1B
3X5.

bandwidth limitation between processor and mem-
ory) through direct computation mapping into hard-
ware. These systems are also capable of dynamic
changing of hardware logic, which it implements.
Thus, an application can be partitioned temporar-
ily for execution on the hardware which enables to
execute more hardware than the existing gates to fit.
Reconfigurable computing refers to systems incorpo-
rating some form of hardware programmability —
customizing how the hardware is used using a num-
ber of physical control points. These control points
can then be changed periodically in order to execute
different applications using the same hardware.

Over the last one and a half decade, the rapid
growth of computer architecture and microproces-
sor has brought about a radical growth in both cir-
cuit densities and speed of VLSI systems. Some
computation-intensive applications, previously feasi-
ble only on supercomputers, are presently feasible
on workstations and PCs. Similarly, the use of re-
configurable architecture has also extended during
the past decade or two. The principle attributes of
these reconfigurable architectures are the capability
of dynamic mapping of a portion of a program to
the hardware to exploit the implicit data parallelism
in the program. Field Programmable Gate Arrays
(FPGAs), which are the most widely used recon-
figurable hardware, are more capable of exploiting
the inherent parallelism than traditional processors.
So naturally for some applications FPGA-based re-
configurable architectures perform much better than
processor-based alternatives. However, for applica-
tions where the data path is coarse-grained (8 bit
or more), the performance and power consumptions
on FPGAs are handled inefficiently. Also the compi-
lation time and the reconfiguration time on FPGAs
are long. To overcome these disadvantages, many
coarse-grained or ALU-based reconfigurable systems
have been proposed as an alternative between FPGA-
based systems and fixed logic CPUs. Coarse-grained

reconfigurable architectures (CGRAs) provide mas-
sive parallelism, high computational capability and
they can be configured dynamically, making them the
most attractive in the years to come especially in em-
bedded system design.

In the past one and a half decades, different types
of CGRAs with different granularity, fabrics, and
mapping techniques, and intended for different ap-
plications have been developed. They have identical
processing elements (PEs), even though wide varia-
tion exists in the number and functionality of compo-
nents and the interconnections between them. These
architectures often consists of tens to hundreds of PEs
intended to execute word-level operations as opposed
to the bit-level ones common in FPGAs. The coarse
granularity of CGRAs drastically reduces the power,
area, delay, and configuration time compared with
FPGAs. As a result, we have seen the emergence of
a wide range of CGRAs over recent years.

Mapping applications to CGRA is a combination
of assigning time cycles for operations to execute in
(scheduling), mapping these operation executions to
specific processing elements (allocation), and routing
the operands or input data by mapping and schedul-
ing data communications to specific interconnects in
the fabric (routing). This type of mapping requires
several considerations. The first two are the selection
of target architecture and the appropriate program-
ming language. The language is important because
with the help of this one has to write the application
that has to be mapped to the target architecture.

There has not been much work on mapping appli-
cations directly on to coarse-grained reconfigurable
architectures. Although there is extensive research
and even commercial tools for FPGAs and fine-
grained reconfigurable architectures, the techniques
developed for them are not directly applicable to
CGRAs (a PE contains at least an ALU), because
of the substantial differences in PEs and interconnec-
tion architectures among others. This paper investi-
gates the works done so far on compilation approach
for CGRA.

2 Coarse-grained Reconfig-
urable Architectures

Hartenstein surveyed the works done so far in the
fields of reconfigurable computing [1]. He first briefly
outlined the major aspects of various types of re-
configurable architectures and demonstrated possible
methods for programming them.

According to Hartenstein mesh-based architec-
tures arrange their processing elements in a rectan-
gular array, featuring horizontal and vertical connec-
tions. This structure allows efficient parallelism and
a good use of communication resources. However, the
advantages of a mesh are traded for the need of an
efficient placement and routing step. The quality of
this step can have a remarkable impact on the appli-
cation performance. Due to the relative low number
of processing elements, the placement and routing is
often much less complex than for e.g. FPGAs.

The arrangement of the processing elements en-
courages nearest neighbor links between adjacent el-
ements as an obvious communication resource. Typ-
ically, longer lines are added with different lengths,
which allow connections over several processing ele-
ments.

A more uncommon arrangement of processing ele-
ments is one or several linear arrays, typically featur-
ing connections between the neighbors. This struc-
ture is motivated by the idea of mapping pipelines
onto it, with each processing element featuring one
pipeline stage. This works well for linear pipelines
without forks. If there are forks in the pipeline, which
would need a two-dimensional realization, additional
routing resources are needed, which are normally pro-
vided by longer lines spanning the whole or a part of
the array, often being segmented. The linear struc-
ture allows a direct mapping of pipelines, with the
mentioned problems for forks.

A full crossbar switch allows arbitrary connections
between processing elements, making it the most
powerful communication network. The routing task
is thus a simple operation.

3 Compilation on Coarse-
grained Reconfigurable Ar-
chitectures

3.1 Constraints for mapping

During mapping applications to coarse-grained recon-
figurable architectures (CGRASs) the following con-
straints mentioned by Hannig et al. in their work [2, 3]
need to be considered: (a) array of PEs, (b) mem-
ory, (c) interconnect structures, (d) I/O ports, (e)
synchronization, and (f) reconfiguration mechanisms.
These constraints are due to the limited and fixed
amount of resources found in programmable devices
and reconfigurable logic devices. When mapping ap-

plications to CGRAs, the above constraints make
mapping quite difficult. The applications must be
analyzed to detect the operations it performs. Es-
pecially the operations that are executed frequently
must be identified.

A multi-mode addressing scheme is used for com-
bining different sizes of memory. Memory can be di-
vided into local memory as registers files within each
PEs or into memory banks capable of storing hun-
dreds of thousands of words. During data mapping
the alignment and the number of the memory banks
play a vital role. If the application is memory inten-
sive rather than computer intensive, the number of
memory units should be larger than ALUs. In short,
it is necessary to determine the suitable number and
types of functional units required for a particular ap-
plication.

3.2 Mapping Techniques

There have been some efforts on compiling applica-
tions (computation intensive part, mainly loops) onto
coarse-grain reconfigurable architectures (CGRAs).
The various compilation techniques mainly depend on
the characteristics of the particular CGRA. Several
attempts taken in this regard are briefly described
below.

In Garp [4], the reconfigurable hardware is a row
of processing elements. The host is capable of con-
figuring and controlling the reconfigurable array us-
ing instruction set extensions. Garp’s features can
be effectively utilized through automatic compilation.
The compiler draws heavily from techniques used in
compilers for VLIW architectures to identify Instruc-
tion Level Parallelism (ILP) in the source program,
and then to schedule code partitions for execution on
the array of computing elements. The processor can
run at a higher clock rate as the Garp array remains
separate from the main processor. This allows Garp
to have the best performance on sequential code that
has little ILP. Garp’s array allows the merging of mul-
tiple dependent operations into a single module, re-
ducing the critical path. The overlapping iterations
on Garp don’t compete for function units, thereby
making scheduling much simpler.

In CHIMAERA [5], the reconfigurable hardware
is a collection of programmable logic blocks organized
as interconnected rows. It is a micro-architecture
that integrates a reconfigurable functional unit into
the pipeline of an aggressive, dynamically scheduled
superscalar processor. CHIMAERA tightly couples a
processor and a reconfigurable functional unit (RFU).

CHIMAERA C compiler automatically generates bi-
naries for RFU execution. It is capable of mapping a
sequence of instructions into a single RFU operation.
The focus of the compiler is on identifying frequently
executed instruction sequences and mapping them to
a Reconfigurable Functional Unit Operation (RFUO)
that will execute on the reconfigurable hardware.

PipeRench [6] is an interconnection network of
configurable logic block and storage elements. The
approach is to analyze the application’s virtual
pipeline, which is mapped onto physical pipe stages
to maximize execution throughput. The compiler
uses a greedy place-and-route algorithm to map these
pipe stages onto the reconfigurable fabric. PipeRench
uses a technique called pipeline reconfiguration to
improve compilation time, reconfiguration time, and
forward compatibility. A reconfigurable system par-
titions computations between the fabric and the sys-
tem’s other execution units. The fabric does recon-
figurable computations whereas the processor does
system computations. The system performs recon-
figurable computations by configuring the fabric to
implement a circuit customized for each particular
reconfigurable computation. The compiler embeds
computations in a single static configuration rather
than an instruction sequence, reducing instruction
bandwidth and control overhead. However, their
technique is limited to very specific architectures, and
thus cannot be applied to other coarse-grained recon-
figurable architectures.

The RAW micro-architecture [7] is a set of inter-
connected tiles, each of which contains its own pro-
gram and data memories, ALUs, registers, config-
urable logic and a programmable switch that can sup-
port both static and dynamic routing. RAW compiler
uses the SUIF compiler infrastructure. The compiler
partitions the program into multiple, coarse-grained
parallel threads, each of which is then mapped onto
a set of tiles. The RAW compiler views the set of N
tiles in a RAW machine as a collection of functional
units for exploiting ILP. But the compiler can gener-
ate unoptimized code for a small set of programs.

The RaPiD architecture [8] is a field pro-
grammable architecture that allows pipelined com-
putational structures to be created from a linear ar-
ray of ALUs, registers and memories. These are in-
terconnected and controlled using a combination of
static and dynamic control. RaPiD has a linear dat-
apath that is a different approach compared with
2-dimensional meshes of processing elements (PEs).
Its Functional Units (FUS) communicate in nearest-
neighbor fashion. This constraint simplifies appli-
cation mapping but restricts the design space dra-

matically. The VLIW compiler front-end is used to
transform programs written in a high-level language
like C or Java to a control/data flow graph that is
then scheduled to the configurable data path. The
scheduling problem is formulated as a place and route
problem that maps data flow graphs from the pro-
gram control/data flow graph to a computing sub-
strate comprising multiple instances of the data path
unrolled in time.

Some research efforts [9, 10] have focused on
generic issues and problems in compilation like op-
timal code partitioning, and optimal scheduling
of computation kernels for maximum throughput.
While [10] proposes dynamic programming to gener-
ate an optimal kernel schedule, [9] proposes an explo-
ration algorithm to produce the optimal linear sched-
ule of kernels in order to minimize reconfiguration
overhead and maximize data reuse.

Bondalapati et al. [11] develop algorithmic tech-
niques to map loops in a loop onto reconfigurable ar-
chitectures. Their technique is granularity-neutral for
reconfigurable architectures. They aim to minimize
the run-time reconfiguration when the resources (e.g.,
PEs) in the architecture are less than what is needed
to pipeline all the computations in the loop. They use
heuristic algorithms to reduce the reconfigurable cost
between different pipeline segments. They have simi-
lar concerns in that they try to find a better pipeline
organization during mapping applications onto the
architecture. However, the only architectural feature
they consider is the reconfiguration resource.

Bondalapati [12] also proposed data context
switching technique to maximize the throughput of
DSP applications by mapping nested loops onto re-
configurable architectures. Data Context Switching
overcomes the feedback dependencies by switching
between different contexts of the outermost loop. It
uses embedded local memory available in most re-
configurable architectures. The technique is capable
of hiding the delay from the loop-carried dependency
when there is an outer loop with no loop-carried de-
pendency, by utilizing the independent data sets of
the outer loop. Even though this technique was ap-
plied to a coarse-grained reconfigurable architecture,
Chameleon [13], as well as an FPGA, it requires an
outer loop with no loop-carried dependency to find in-
dependent data sets. Moreover, it assumes that each
PE has access to an ample local memory to store the
data context when the outer loop is executing other
iterations, which is not valid for many coarse-grain
reconfigurable architectures.

Huang and Malik [14] proposed a design method-

ology of a dynamically reconfigurable data path archi-
tecture, which is used as an accelerating coprocessor.
Even though this work targets coarse-grained recon-
figurable architecture, their reconfigurable data path
is application-specific and reconfiguration is used only
to switch between the loops for which the reconfig-
urable data path is designed.

Nikhil et al. [15, 16] devised an algorithm for au-
tomatic mapping applications (loops) to Dynamically
Reconfigurable ALU Array (DRAA), a generic re-
configurable architecture template which can repre-
sent a wide range of coarse-grained reconfigurable ar-
rays. They placed and routed the operations of a
loop body onto the ALU array, to be executed in a
loop-pipelined fashion. Their algorithm maximized
utilization of the memory bandwidth. They did this
in two steps. First they produced line-level place-
ments by combining the operations of a given loop.
Then they combined the line placements to create
plane level. Their algorithm reduced the global inter-
connect requirements and gave near optimal mapping
for several loops.

ADRES [17] is a power-efficient flexible architec-
ture template that combines a very long instruction
word (VLIW) DSP with a coarse-grain array. The
array, containing many functional units, accelerates
data-flow loops by exploiting high degrees of loop-
level parallelism. The VLIW DSP efficiently executes
the part of the code which can’t achieve so large par-
allelism. The VLIW and the array are coupled and
communicate by a shared VLIW register file.

The DRESC [18] retargetable C compiler targets
both the VLIW processor and the array. Application
source code can therefore be compiled directly onto
the coarse-grained reconfigurable processor. The ar-
chitecture template allows designers to specify the in-
terconnection, the type and the number of functional
units. The architectural flexibility of ADRES, com-
bined with the C design flow, allows a designer to
rapidly explore architectural options for an applica-
tion domain. DRESC [18] framework is a novel mod-
ulo scheduling algorithm, which is capable of pipelin-
ing a loop onto the partially interconnected array to
achieve high parallelism. The task of modulo schedul-
ing is to map the program graph to the architecture
graph and try to achieve optimal performance while
respecting all dependencies.

KressArray [19] uses simulated annealing to si-
multaneously solve the placement and routing sub-
problems. However, it does not support multiple
configurations for one loop. In KressArray, the dat-
apath synthesis system (DPSS) maps statements of

a high level language description onto the reconfig-
urable DataPath Architecture (rDPA). Configuring
the rDPA is composed of logic optimization and tech-
nology mapping, placement and routing, and I/0
scheduling.

MorphoSys [20] aims at applications which have
inherent data-parallelism, high granularity, and high
throughput requirements. In it an advanced proces-
sor with multi-threading may be used to enable con-
current processing of application programs by the Re-
configurable Cell (RC) array and the main processor.

4 Future Research Directions

There has not been any work so far for mapping ap-
plications solely on coarse-grained reconfigurable ar-
chitectures. We are working in this direction. The
application will be first written using the parallel, ob-
ject oriented language proposed in [21]. The source
code will then be translated into parallel program
graph (PPG) [22] (PPG subsumes program depen-
dence graphs (PDGs) [23] and conventional control
flow graphs (CFGs) [24]). Sequential consistency will
be used as the correctness criteria. Optimizations will
be done on the PPG. Then after applying scheduling,
allocation and routing on the PPG, the algorithm can
be mapped to the target CGRA.

References

[1] R. Hartenstein. A Decade of Reconfigurable
Computing: A Visionary Retrospective. In De-
sign, Automation and Test in Europe, pages 642—
649, Munich, Germany, Mar 2001. IEEE Com-
puter Society.

[2] Frank Hannig, Hritam Dutta, and Jurgen Te-
ich. Mapping of Regular Nested Loop Programs
to Coarse-Grained Reconfigurable Arrays Con-
straints and Methodology. 18th International
Parallel and Distributed Processing Symposium
(IPDPS’04) - Workshop 3, 2004.

[3] F. Hannig, H. Dutta, and J. Teich. Regular
Mapping for Coarse-grained Reconfigurable Ar-
chitectures, 2004.

[4] T. Callahan, J. Hauser, and J. Wawrzynek. The
Garp architecture and C compiler. IEEE Com-
puter, 33(4):62-69, 2000.

[5] Zhi Alex Ye, Andreas Moshovos, Scott Hauck,
and Prithviraj Banerjee. CHIMAERA: A

[10]

[11]

High-Performance Architecture with a Tightly-
Coupled Reconfigurable Functional Unit. In
ISCA, pages 225-235, 2000.

Seth Copen Goldstein, Herman Schmit, Mihai
Budiu, Srihari Cadambi, Matt Moe, and R. Reed
Taylor. PipeRench: A Reconfigurable Archi-
tecture and Compiler. Computer, 33(4):70-77,
2000.

Elliot Waingold, Michael Taylor, Devabhaktuni
Srikrishna, Vivek Sarkar, Walter Lee, Victor
Lee, Jang Kim, Matthew Frank, Peter Finch,
Rajeev Barua, Jonathan Babb, Saman Amaras-
inghe, and Anant Agarwal. Baring It All to Soft-
ware: Raw Machines. Computer, 30(9):86-93,
1997.

Carl Ebeling, Darren C. Cronquist, Paul
Franklin, Jason Secosky, and Stefan G. Berg.
Mapping Applications to the RaPiD Config-
urable Architecture. In Kenneth L. Pocek and
Jeffrey Arnold, editors, IEEE Symposium on
FPGAs for Custom Computing Machines, pages
106-115, Los Alamitos, CA, 1997. IEEE Com-
puter Society Press.

R. Maestre, F. Kurdahi, N. Bagerzadeh,
H. Singh, R. Hermida, and M. Fernandez. Kernel
Scheduling in Reconfigurable Computing, 1999.

Kiran Bondalapati, George Papavassilopoulos,
and Viktor K. Prasanna. Mapping Applica-
tions onto Reconfigurable Architectures using
Dynamic Programming, 1999.

Kiran Bondalapati and Viktor K. Prasanna.
Loop Pipelining and Optimization for Run Time
Reconfiguration. Lecture Notes in Computer Sci-
ence, 1800:906-77, 2000.

Kiran Bondalapati. Parallelizing DSP Nested
Loops on Reconfigurable Architectures using
Data Context Switching. In Design Automation
Conference, pages 273-276, 2001.

http://www.chameleonsystems.com.

Z. Huang and S. Malik. Exploiting Operation
Level Parallelism through Dynamically Recon-
figurable Data Paths, 2002.

Jong eun Lee, Kiyoung Choi, and Nikil D.
Dutt. Compilation approach for coarse-grained
reconfigurable architectures. IEEE Des. Test,
20(1):26-33, 2003.

[16]

[20]

[23]

[24]

Jong eun Lee, Kiyoung Choi, and Nikil D. Dutt.
An algorithm for mapping loops onto coarse-
grained reconfigurable architectures. In LCTES
'083: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for
embedded systems, pages 183-188, New York,
NY, USA, 2003. ACM Press.

Bingfeng Mei, Serge Vernalde, Diederik Verkest,
Hugo De Man, and Rudy Lauwereins. Adres:
An architecture with tightly coupled vliw pro-
cessor and coarse-grained reconfigurable matrix.

In FPL, pages 61-70, 2003.

B. Mei, S. Vernalde, D. Verkest, H. Man, and
R. Lauwereins. DRESC: A retargetable com-
piler for coarse-grained reconfigurable architec-
tures, 2002.

Reiner W. Hartenstein and Rainer Kress. A
datapath synthesis system for the reconfigurable
datapath architecture. In ASP-DAC ’95: Pro-
ceedings of the 1995 conference on Asia Pacific
design automation (CD-ROM), page 77, New
York, NY, USA, 1995. ACM Press.

Hartej Singh, Ming-Hau Lee, Guangming Lu,
Nader Bagherzadeh, Fadi J. Kurdahi, and
Eliseu M. Chaves Filho. Morphosys: An in-
tegrated reconfigurable system for data-parallel
and computation-intensive applications. IFEFE
Trans. Comput., 49(5):465-481, 2000.

Theodore S. Norvell. Language Design for
CGRA project. 2006.

Vivek Sarkar and Barbara Simons. Parallel pro-
gram graphs and their classification. In Pro-
ceedings of the 6th International Workshop on
Languages and Compilers for Parallel Comput-
ing, pages 633—-655, London, UK, 1994. Springer-
Verlag.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
Warren. The program dependence graph and
its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319-349, 1987.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

	Background
	Coarse-grained Reconfigurable Architectures
	Compilation on Coarse-grained Reconfigurable Architectures
	Constraints for mapping
	Mapping Techniques

	Future Research Directions

