
Mapping loops onto Coarse-Grained Reconfigurable Architectures using

Particle Swarm Optimization

Rani Gnanaolivu, Theodore S. Norvell, Ramachandran Venkatesan
Faculty of Electrical and Computer Engineering

Memorial University of Newfoundland
St. John’s, NL, Canada A1B 3X5

{ranig, theo, venky}@mun.ca

Abstract— Coarse-Grained Reconfigurable Architectures
(CGRAs) have gained currency in recent years due to their
abundant parallelism and flexibility. To utilize the abundant
parallelism found in CGRAs, we propose a fast and efficient
Modulo-Constrained Hybrid Particle Swarm Optimization
(MCHPSO) scheduling algorithm to exploit loop level parallelism
in applications. PSO has been proved to be successful in many
applications in continuous optimization problems. In this paper,
we show that PSO is capable of software pipelining loops by
overlapping placement, scheduling and routing of successive loop
iterations and executing them in parallel. Our proposed
algorithm has been experimentally validated on various DSP
benchmarks under two different architecture configurations.
These experiments indicate that the proposed MCHPSO
algorithm can find schedules with small initiation intervals within
a reasonable amount of time. PSO is thus a promising alternative
for obtaining near optimal solutions to this NP-hard scheduling
problem.

Keywords- Coarse-Grained Reconfigurable Architectures;
Particle Swarm Optimization; Modulo Scheduling; Loop level
parallelism; Mapping.

I. INTRODUCTION

Reconfigurable Systems have drawn increasing attention
from both academic and commercial research applications in
the past few years because they combine flexibility with
efficiency and upgradability [1]. Among the reconfigurable
architectures, many Coarse-Grained Reconfigurable
Architectures (GGRAs) have been proposed as an alternative
to FPGA-based systems [2]. CGRAs consist of programmable
coarse-grained Processing Elements (PEs) which support a
predefined set of word-level operations, a programmable
interconnection network, a configuration memory, and a
controller [1]. Unfortunately the available parallelism has been
exploited by few automated design and compilation tools [2].

The massive amounts of parallelism found in CGRAs can
be used to map time critical loops of an application. This can
be achieved by Modulo Scheduling [2], which is a software
pipelining technique that overlaps several iterations of a loop
by generating a schedule for an iteration of the loop. Modulo
scheduling uses the same schedule for subsequent iterations
started at a constant interval called the initiation interval (II).

Several heuristic techniques have been tried by researchers
in solving the modulo scheduling problem. In this paper, we
propose a modulo scheduling algorithm based on Particle
Swarm Optimization (PSO). We call this the Modulo-
Constrained Hybrid Particle Swarm Optimization (MCHPSO)

algorithm. PSO provides a near optimal solution with fast
convergence and low execution time in solving various
combinatory and multidimensional space optimization
problems [3]. The MCHPSO algorithm enforces modulo
constraints on the parallelism of loop operations as well as
data dependence, while mapping onto the CGRA.

The MCHPSO algorithm has been tested on benchmarks
taken from [4], [5], and [6]. The benchmarks are derived from
applications written in the C programming language. The
results show that the proposed MCHPSO algorithm finds a
valid schedule for the given target applications in reasonable
time, with efficient utilization of resources.

The rest of this paper is organized as follows: An overview
of compilation and background is given in Section II. The
proposed PSO-based modulo scheduling algorithm
(MCHPSO) is explained in Section III. The last three sections
present the experimental results, related work, and conclusion.

II. BACKGROUND

In this paper, we propose an algorithm for modulo
scheduling of a loop to be mapped onto CGRAs. The method
starts from an imperative language representation of the
application, such as a program written in C or some other
high-level language.

Each source program is converted to a Data Flow Graph
(DFG). The given Target Architecture (TA) is represented by
a graph containing all the necessary information such as the
number of resources, capacity and interconnections as well as
other specific information for each resource. The generic TA
graph representation was designed to allow a wide range of
architectures. The ADRES [1] architecture was adopted as the
TA for our current work. We chose ADRES architecture
because it has a flexible architecture template and we can
easily map loops onto the ADRES array in a highly parallel
way. Furthermore, choosing this architecture allows direct
comparison with the method presented in [1]. The TA is
replicated for each time cycle to form the Routing Resource
Graph (RRG), an internal time-space graph representation.

 The mapping algorithm MCHPSO maps each node of the
DFG to a node of the RRG and each edge of the DFG to a path
in the RRG. The generated scheduled code of the loop exhibits
a high degree of Instruction Level Parallelism (ILP).

A. Motivational Example

The compilation flow with a motivational example is
described in Figure 1. Consider the architecture configuration

145978-1-4244-7896-5/10/$26.00 c©2010 IEEE

taken in Figure 1 (a), and a DFG represented in Figure 1 (c).
The architecture components in Figure 1 (a) are Input port (I),
Functional Unit (FU), Write Port (WP), Read Port (RP),
Register File (RF). Figure 1 (b) shows an RRG created by
replicating the TA across two time cycles, as the II is 2. The
final embedding of DFG on RRG is shown in Figure 1 (d).

The schedule produced by the algorithm maps each
operation to a processing element and a time and maps each
edge in the DFG to a path in the RRG. During the scheduling
process, the MCHPSO keeps track of the resources being used
in a Modulo Reservation Table (MRT), as shown in TABLE I.

 The columns in the MRT represent the resources in the
architecture and the rows represent remainders modulo the
initiation interval. The operation is to be executed in

at time 0, so the FU1 is reserved for all cycles divisible
by II. Once a resource is reserved it will not be available for
the other operations in time cycles that have the same
remainder modulo II. The routing path from operation to
operation uses the WP1 (2), RF1 (2), RP1 (2) , which are also
reserved in the MRT. The capacity of resources are given in
brackets, otherwise they have capacity of one.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization
approach that follows an evolutionary metaphor. It is a
population-based search procedure in which individuals,
called particles, changes their positions, or states, with time.
Each particle in the PSO system represents a potential solution
to the problem, and at the end of the search, the best particle
will hold the best solution found. The standard PSO is
discussed in [3].

In every iteration, the velocity and position of each particle
are calculated according to the expressions given below.

(1)
(2)

where

(3)

denotes the current iteration and the maximum
number of iterations. denotes the particle coordinates at

denotes the velocity at . and denote the acceleration
constants in the range and and are random values in
the range . and denote the local best particle position
and global best particle position at the iteration. denotes
the inertia weight factor with as the initial weight
and final weight.

After calculating , we can get the new particle position
to search in the next iteration. PSO algorithm has the
advantages of high speed, stable convergence and robustness;
it is parallelized well and generates good solutions [3].

PSO shows significant performance in the initial iterations
when compared with Ant Colony Optimization (ACO). PSO
has the capability to quickly arrive at an optimal/near-optimal
solution [7]. An advantage of PSO over Genetic Algorithm
(GA) is that PSO maintains all the solutions in the search space
and changes of inertia weight leads to convergence [8]. Since
previous research on PSO [3], [9] shows that scheduling can be
done with PSO, we tried PSO with a hybrid combination of
mutation operations for our Modulo Scheduling problem to
avoid premature convergence in PSO algorithm.

Figure 1. Motivating example a) 2 x 2 target architecture
template instance, b) RRG, c) DFG andd) Final schedule, place and route

result.

TABLE I. MRT FOR THE DFG INFIGURE 1 (C)

C. Target Architecture Graph

The target architecture consists of a graph of basic
components, including Functional Units (FUs), Register Files
(RFs), Column Buses (CBs), and Row Buses (RBs). Similar to
the work done in [2] and [10], our work aims to target a wide
range of CGRAs. For the experiments reported in Section V,
we targeted an architecture similar to the ADRES [1]
architecture template.

 The TA graph is formed from a target description
file where,

• is the set of vertices. Each vertex represents a FU or
RF or CB or RBs described above.

• is the set of edges, indicating the incoming or
outgoing edge in the operation. and are the source
and target vertex for edge .

Each FU can receive input from various resources of the
graph and similarly the output of each FU can be routed to
various destination resources [1]. The target architecture used
in the experiments of Section V has both 4x4 instances and
8x8 instances of FUs. An example 4x4 instance of target
architecture is shown in Figure 2. Only the top row of FUs,
termed as Memory Unit (MU), may be used for load and store
operations.

146 2010 International Conference on Soft Computing and Pattern Recognition

D. Routing Resource Graph

For scheduling, placing, and routing loops onto the target
architecture, we employ a time-space graph called a Routing
Resource Graph (RRG). The RRG is obtained from the TA
graph described above by replicating each vertex in for
every time cycle specifyingthe interconnections with edges
derived from . The RRG is where
• – An infinite set of copies of the TA’s vertex set.

Figure 2. 4 x 4 target architecture template instance.

• edges – Every incoming edge in the TA graph that
doesn’t end at a register write port is replicated across
time.

• edges – Every incoming edg in the TA graph that ends
at a register write port is represented in the RRG as an
outgoing edge from its source in current time cycle to the
write port in the next time cycle. Use of such an edge
represents writing to a register [11].

• edges – For every RF in the TA graph, we have a set of
edges that transmit data from each instance of the RF to
the instance in the next time. Use of such an edge
represents maintaining data in a register [11].

E. Initiation Interval

To enforce the modulo constraints, we have to generate a
schedule for one iteration of the loop, such that this same
schedule is repeated at regular intervals with respect to data
dependences and resource constraints [1]. This interval is
termed the Initiation Interval (II), essentially reflecting the
performance of the scheduled loop. To start the MCHPSO
scheduling process, the II is assigned the value of a lower
bound called as Minimum Initiation Interval (MII) and is
computed as in [1].

F. Data Flow Graph

The target application program description is analyzed and
transformed to find the critical loops to be mapped to the
CGRA. In our work, we have considered only the inner loop
body of the application with no inter-iteration dependence.
The loop kernel is rewritten to create a data flow graph
representation with nodes as the set of operations in the loop
kernel and arcs as the set of interconnection edges, indicating
the incoming or outgoing edge of the operation [7].

III. MAPPING ALGORITHM

A. Modulo Scheduling

Modulo Scheduling is a technique for software pipelining
loops [2]. The schedule for each iteration is divided into stages
of equal duration, so that different stages of the successive
iterations get overlapped. The number of stages in each
iteration is called the Stage Count (SC). Modulo scheduling
ensures that there are no resource conflicts as multiple stages
execute simultaneously.

B. Proposed Algorithm

1) Modulo scheduling with Modulo Constrained Hybrid

Particle Swarm Optimization
Our proposed MCHPSO scheduling algorithm

simultaneously searches for a good schedule, placement, and
routing solution for the entire set of operations given in DFG;
it avoids the time consuming sequential search for each
operation proposed in the mapping algorithm described in [2].
In [2], [11], [10] several trials are needed to find the best
schedule for an operation before proceeding to the next
operation. In our algorithm, all the particles search for a
complete schedule simultaneously. To efficiently map loops
onto the CGRA, we have adopted the idea of modulo
scheduling used in [2] along with the combination of two
heuristic approaches, PSO and randomization. From [3] and
[9] we note that PSO could be applied to multidimensional
scheduling problems. The application of PSO to modulo
scheduling converges faster but can be caught in a local
optimum. To escape the local optima, we have used a
randomization method in combination with PSO. The overall
method of MCHPSO to schedule, place and route a loop is
explained in Figure 3. The inputs to the algorithm are TA
graph and a DFG.

Figure 3. Mapping DFG toRRG

First the Minimum Initiation Interval (MII) is computed as
discussed in the previous section. Second, ASAP (As Soon As
Possible) and ALAP (As Late As Possible) times are
calculated as in [2] for the given DFG. After generating the
DFG and the RRG, the MCHPSO algorithm is executed to
schedule, place, and route the loop.

2) Particle Encoding for the problem
To frame the solution for the scheduling problem by using

the particles, we need to consider various dimensions for each
particle, size of DFG, placement of nodes, routing and the
schedule time. To establish "best solution mapping", we have

ProcedureModuloSch_Place_Route (DFG, TA)
begin
 II := MII (DFG)
 dfgList := ComputeASAPandALAP (DFG)
 sortedDFG := sort(dfglist)
 max_schLength := findschLength(sortDFG)
 schSucess := false
 trials :=0
 while !schSucess&& trials<NTRIALS do
 CreateRRG(TA, II, max_schLength)
 schSucess:=MCHPSO(sortedDFG, RRG, II, max_schLength)
 II++
 trials++
 end while

end

2010 International Conference on Soft Computing and Pattern Recognition 147

taken each particle position as a mapping of DFG nodes to
RRG nodes and DFG edges to RRG paths.

3) MCHPSO
In MCHPSO, inputs are the RRG and the sorted DFG. The

number of operations in the DFG is initialized to the number
of nodes, N, for each particle. Each particle in the PSO takes
the initial value for the place and schedule of each node in the
range of [ASAP, ALAP] that satisfies the dependence
constraint. Once all the particles are initialized, their fitness is
calculated as illustrated in the next subsection. Every particle
updates its Local-best () position if the new fitness is
better than the current fitness. Once all the particles have been
updated to their best candidate solution, the global best
particle is chosen and its position is denoted by the
global best particle is chosen and its position is denoted
by

Every particle updates its velocity according to (4). The
 function in (4) creates a swap sequence [3]

of the current particle’s () placed and scheduled
nodes with either from global best position) or from
the local best position Once the new velocity
() is generated, the current particle position ()
is swapped according to the co-ordinates in the as in
(5). Next the mutation operator is applied to the new particle
position) is shown in (6). The

 function selects a random node of the
particle and chooses a random placement and schedule value
and replaces the particle’s current value. Once the mutation is
done on the particle, the new particle coordinates are ready for
the next generation of MCHPSO. The particles keep searching
for the best solution in the current II. The pseudo code is
shown in Figure 4.

4) Fitness calculation
The fitness calculation considers multiple objectives from

the routing path produced by Dijkstra’s shortest-path
algorithm [12]. The three main objectives considered in our
work are that no resource is overused, that all edges in the
DFG are routable, and that few resources are used to route.
The routing cost is computed by accumulating the cost of all
RRG nodes used by the new placement and routing of the
operation. The fitness calculation was designed to penalize
particles which overuse resources. Each node in the RRG has
a capacity, base cost [2], availability, and usage number. The
majority of RRG nodes have a capacity of one whereas a few
types of nodes such as register files have a capacity larger than
one.

(4)

where is an acceleration constant ranges .

(5)

(6)

Figure 4. The MCHPSO algorithm

IV. EXPERIMENT

A. Set up

The proposed scheduling algorithm was written in Java
and executed on an Intel Core 2 Duo CPU with 4 GB RAM
and a clock speed of 2 GHz. To schedule a loop onto the
CGRAs, two main inputs were required for the scheduling
algorithm. The first input is the DFG generated from the
benchmark loops. The second input for the MCHPSO is the
CGRA configuration. The TA graph is created from the TA
configuration.

Other than the two main inputs, DFG and TA, MCHPSO
requires the following parameters: the number of particles is
10, the relax-factor for the schedule length is the II of the
DFG, as one or zero depending on the random generation,
the number of trials for each II is one, and the number of
iterations to carry out the algorithm is 20.

Among the various CGRAs discussed in [1], Architecture
for Dynamically Reconfigurable Embedded Systems
(ADRES) [2] was used for the experiments. The TA consists
of 64 FUs, which are divided into four tiles. Each tile consists
of 16 FUs in a 4 by 4 grid as shown in Figure 2. The
benchmarks used consist of ten programs, which are derived
from [4], [5], and [6].

B. Experiment Results

The overall mapping results of all the selected benchmarks
are shown in TABLE II where the first column shows the
benchmark name, second column denotes the number of
operations in the loop kernel, and the third column shows the
Initiation Interval (II) at which the loop kernel is mapped. The
fourth column shows the Operations Per Cycle (OPC) which is
calculated by (7). The fifth column shows the schedule density
without routing, calculated as in (8). The schedule density
without routing considers the count of FUs used in the
placement. The sixth column shows the schedule density of
FU with routing calculated by (9), where the number of stages

Procedure MCHPSO (sortDFG, RRG, II, schLength)
begin
for each operation in sortDFGdo
 Initialize Particles
 InitializeMRT(noofFU,II)
end for
repeat NLOOPS times
 for each particle in Particles do
 Find the fitness value fromGetRoutingCost (RRG, particle)
 if the fitness value is better than the best fitnessthen
 Set current fitness value as the new particle best fitness
 end if
 end for
 Find the global best particle
 for each particle do
 Calculate the new particle velocity according to (4)
 Update particle search position according to (5)
 Apply mutation operator for the newPosition (6)
 end for
end while
if validSchedule(bestparticle) then return true
else return false
endif
end

148 2010 International Conference on Soft Computing and Pattern Recognition

is calculated by (10). The schedule density with routing
considers the count of FUs used in the placement as well as in
routing of edges. The seventh column shows the total CGRA
utilization percentage, including all the computation and
routing resources in the CGRA used for the scheduling of loop
kernel calculated by (11).

(7)

(8)

(9)

The eighth column shows the number of stages
overlapped, as calculated in (10). The last column shows the
time taken in seconds to schedule the loop kernel. The
mapping results show that the proposed scheduling algorithm
MCHPSO utilizes from 31.25% to 79.69% of the total FUs
available in the CGRA. The FU utilization depends on the size
of the DFG and the number of stages through which a loop is
unrolled. The largest loop kernels like IDCT_hor (horizontal
pass) and FFT are scheduled within a maximum of 105.89
seconds.

The usage of Functional Units in the CGRA instance has
been studied in Figure 5. From the mapping results, it is
understood that the higher the number of loop operations, the
larger the routing resources required.

(10)

(11)

C. Comparison of MCHPSO with other modulo scheduling
algorithms

TABLE III shows the comparative results of MCHPSO
measured against the modulo scheduling algorithm [1] used in
ADRES architecture. The first column shows the benchmarks
taken for comparison. The second and seventh columns show
the number of operations derived from the benchmarks on
both the algorithms.

The third and eighth columns show the II at which both the
algorithm were able to do the loop level parallelism. The
fourth and ninth columns show the schedule density of FU
(with routing). The fifth and tenth columns show the
Operations Per Cycle (OPC) as calculated in (7). The sixth and
eleventh columns show the scheduling time in seconds for the
mapping of the benchmark. The comparison shows that our
proposed MCHPSO algorithm was able to route the FFT
benchmark within the minimum II with a small measure of
execution time.

TABLE IV shows the comparison of MCHPSO with the
modulo scheduling algorithm used in [10]. The authors of this
paper have used a 2D CGRA with 16 PE with PEIT1 (all PEs
are connected with its row PEs and column PEs) and PEIT2
(nearest neighbour) topology. The execution time is smaller in
the PEIT1 than in PEIT2 because there is a smaller average
routing delay experienced by PEIT2 while PEIT1 overcomes

the routing delay by the richer interconnection topology. A
memory-conscious mapping algorithm based on the priority-
based list scheduling algorithm is used in [10]. Therefore, we
have compared the work done in [10] based on PEIT1 with
our proposed algorithm. The first column in TABLE III shows
the benchmarks taken for comparison. The second and sixth
columns show the number of operations in the benchmark.
The third and seventh column shows the Operations Per Cycle
(OPC) as calculated in (7) and the fifth and ninth columns
show the schedule density of FU (with routing) as calculated
in (9).

This comparative study has established that our proposed
algorithm has a lower schedule density (with routing) and
minimal II for the first four benchmarks in spite of not using
L1 and L0 scratch pad memory, which has been used in [10].
The fifth benchmark 8x8 IDCT-hor depicts a typical case of
showing that our algorithm maps at a lower II with the same

Figure 1. Shows the scheduling density usage percentage with
and without routing in a 4 x 4 CGRA instance for the DFGs.

number of operations and schedule density compared with
results in [10]. The numbers of operations are different for the
comparing algorithms, because of the various analysis and
transformation phase carried out in [1] and [11]. Our
proposed algorithm achieves to map with a minimal II for all
the benchmarks taken for comparison to the work done in [11]
with better utilization of resources. Our proposed algorithm
achieves to map with a minimal II for all the benchmarks
taken for comparison to the work done in [11] with better
utilization of resources.

V. RELATED WORK

In the CGRA compilation, Software Pipelining [13] is used
for instruction parallelism. The idea of software pipelining is
to look for a pattern of operations from various iterations
(often termed as the kernel) so that when repeatedly iterating
over this pattern, it produces the effect that next iteration is
initiated at a regular interval. This interval is termed the
Initiation Interval (II) which essentially reflects when the next
iteration can start to increase the performance of the scheduled
loop. Some of the approaches carried out in modulo
scheduling of the inner loop body are discussed below.

The compilation of inner loop body in CGRAs has been
done with DRESC (Dynamically Reconfigurable Embedded
System Compiler) [2], a retargetable compiler that is able to
parse, analyze, place, route, and schedule the C source code.
In this work they propose a modulo scheduling algorithm
based on simulated annealing where it takes a long
compilation time for larger loops.

0.00

50.00

100.00

20 20 25 28 35 36 67 73 74 78

P
e

rc
e

n
ta

g
e

 o
f

u
sa

g
e

Number of nodes in DFG

ScheduleDensity (without routing) ScheduleDensity (with routing)

2010 International Conference on Soft Computing and Pattern Recognition 149

A memory-conscious mapping methodology for CGRA
architectures was presented in [10] with data reuse capabilities
and priority-based list scheduling algorithm. The resource
aware mapping with local RAMs and flexible interconnection
network enables to map the application. The idea of modulo
scheduling is applied with a graph embedding technique using
an affinity graph heuristic and skewed scheduling space in
[14]. The method achieves better convergence and faster
compilation times with dedicated register files and sparse
network connectivity.

The discrete problem of Instruction scheduling has been
solved using Particle Swarm Optimization PSO with the

traditional list scheduling algorithm [3]. Our approach closely
resembles the work in [2] and [3] by using hybrid PSO with
mutation operator to decide the placement and scheduling
decisions in CGRAs. The routing path value for the fitness
function is calculated from Dijikstra’s algorithm to achieve
better convergence and faster compilation times. In contrast to
all the algorithms discussed, our approach takes the
evolutionary process to decide the simultaneous mapping
decisions for all the nodes in the DFG. The proposed
algorithm optimizes the routing cost as well as holds the
modulo constraints and data dependence.

TABLE I. MCHPSO -- OVERALL MAPPING RESULTS FOR 8 X 8 CGRA

Bench-

Marks

of

ops

II
OPC

Schedule Density

(without routing)

Schedule Density

(with routing)

Total CGRA

Util %

No of

stages

Exe Time

in Seconds

FIR_complex 25 2 12.5 18.75 39.06 12.59 4.00 8.72

Lattice synth 20 1 20.0 29.69 79.69 22.06 10.00 12.58

Volterra 28 2 14.0 21.88 34.38 14.06 3.00 6.87

IIR 36 2 18.0 28.13 62.50 21.14 4.00 12.55

IIR_biquad 35 3 11.7 17.19 31.25 9.25 4.00 16.93

8X8 IDCT_hor 78 3 26.0 40.63 73.44 29.47 5.00 93.11

4X4 FFT 67 3 22.3 34.38 75.52 29.66 5.00 105.89

8X8 FDCT_hor 74 4 18.5 29.69 63.28 18.34 3.00 27.01

8X8 FDCT_Ver 73 3 24.3 37.50 78.13 21.20 4.00 55.67

TABLE II. COMPARISON OF MCHPSO WITH RESULTS IN [1]

Comparing

algorithms

8 x 8 MCHPSO Results reported in [1]

Benchmarks

of

ops

II

Schedule Density

(with routing)

OPC

Exe Time in

Seconds

of

ops

II

Schedule Density

(with routing)

OPC

Exe Time

in Seconds

8X8 IDCT_hor 78 3 73.44 26.00 93.11 128 3 90.10% 42.70 340

4X4 FFT 67 3 75.52 24.00 105.89 79 4 75.00% 19.80 314

150 2010 International Conference on Soft Computing and Pattern Recognition

TABLE III. COMPARISON OF MCHPSO WITH RESULTS IN [10]

Comparing

algorithms

4 X 4 MCHPSO Results reported in [10]

Benchmarks

of

Ops II OPC

Schedule

Density

(with

routing)

of

Ops II OPC

Schedule

Density

(with

routing)

latasynth 20 2 9.0 68.75 18 6 3.0 75.00

Volterra 28 4 7.0 45.31 27 7 3.9 70.30

IIR 36 5 7.0 43.75 39 8 4.9 59.50

4X4 FFT 67 7 9.0 59.82 95 17 5.6 69.60

8X8 IDCT_hor 78 6 13.0 85.16 79 14 5.6 85.10

latanal 20 2 9.0 65.63 18 8 2.3 62.50

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the Modulo Constrained
Hybrid Particle Swarm Optimization (MCHPSO) algorithm
for the loop scheduling problem in CGRAs. The results
from our proposed algorithm indicate that the algorithm can
find a valid schedule, placement and routing for the given
benchmark loops on required initiation interval and maps
with a good utilization of resources. Our algorithm can be
enhanced to exploit if-conversion, conditional branches and
inter-iteration dependence in the loop exploitation. In our
future work, we will be trying to apply the proposed
algorithm on various reconfigurable architectures and
complex applications. The results produced by MCHPSO
will be compared with other hybrid evolutionary algorithms
in the future. To study the parallelization of the mapping
solution search in the proposed algorithm, we have tried on
a quad core machine with eight logical processors. The
preliminary results are promising and will be discussed in
the future paper.

REFERENCES
[1] B. Mei, M. Berekovic, and J.-Y. Mignolet, Fine- and Coarse-Grain

Reconfigurable Computing. Springer Netherlands, 2007, ch. 6, pp.
255-297.

[2] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” Computers and Digital
Techniques, IEE Proceedings, vol. 150, no. 5, pp. 255–261, Sept.
2003.

[3] Rehab F. Abdel-Kader, “Particle Swarm Optimization for
Constrained Instruction Scheduling,” VLSI Design, vol. 2008, Article
ID 930610, 7 pages, 2008. doi:10.1155/2008/930610

[4] Texas Instruments. inc, “DSP Benchmarks,” http://dspvillage.ti.com,
May 2009.

[5] Texas A&M University-Kingsville, “Lattice LPC analysis
filter.”http://www.engineer.tamuk.edu/SPark/Analysis-Synthesis.htm,
December 2009.

[6] University of Patras, “VLSI design.”http://www.vlsi.ee.upatras.gr,
December 2009.

[7] S.Nonsiri and S.Supratid, “Modifying Ant Colony Optimization,”
Soft Computing in Industrial Applications, 2008. SMCia ’08. IEEE
Conference on , vol., no., pp.95-100, 25-27 June 2008.

[8] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for
dynamic adaptation in particle swarm optimization,” Computers and
Operations Research, Volume 33, Issue 3, March 2006, Pages 859-
871.

[9] T.Chiang, P. Chang, and Y.Huang, "Multi-Processor Tasks with
Resource and Timing Constraints Using Particle Swarm
Optimization," IJCSNS International Journal of Computer Science
and Network Security, vol. 6, 2006.

[10] G. Dimitroulakos, M. D. Galanis, and C. E. Goutis, "Design space
exploration of an optimized compiler approach for a generic
reconfigurable array architecture," Journal of Supercomputing, vol.
40, pp.127-157,2007.

[11] M. Tuhin and T. Norvell, “Compiling parallel applications to coarse-
grained reconfigurable architectures,” in Electrical and Computer
Engineering, 2008. CCECE 2008. Canadian Conference on, May
2008, pp. 001 723 –001 728.

[12] E. W. Dijkstra, "A note on two problems in connexion with graphs,"
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[13] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
Pipelining,” ACM Comput. Surv., vol. 27, no. 3, pp. 367-432, 1995.

[14] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo Graph
Embedding: Mapping Applications onto Coarse-Grained
Reconfigurable Architectures,” in CASES Š06: Proceedings of the
2006 international conference on Compilers, architecture, pp. 136-
146, ACM Press, 2006.

2010 International Conference on Soft Computing and Pattern Recognition 151

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

