
Concurrent Software Verification with Explicit

Transfer of Permission

Theodore S. Norvell
Electrical and Computer Engineering

Memorial University of Newfoundland

Email: theo@mun.ca

Abstract—Concurrent software is difficult to reason

about and impossible to verify by testing. Yet much

software written today is concurrent. We therefore need

practical mechanisms to automatically verify concurrent

software. I propose a way of annotating concurrent pro-

grams based on fractional permissions, dynamic frames,

and explicit transfer of permissions. An annotated pro-

gram may be automatically verified by translating to

a sequential intermediate verification language such as

the Boogie IVL and then verifying a set of sequential

fragments.

CONTENTS

I Introduction 1

II Permissions 2

III Details 2

III-A Initial distribution 2

III-B Forking 2

III-C Conditional critical sections . 3

III-D Rendezvous 4

III-E Other features 4

IV Conclusions and Further Work 4

References 4

I. INTRODUCTION

The concurrent programming language Harpo [1],

[2] is an object-oriented, concurrent programming

language intended for high-performance, embedded

applications. Programs are nondeterministic because

threads execute asynchronously. Memory is poten-

tially shared between threads.

There are several sources for error in Harpo

programs. These fit into two categories.

• Static errors including syntax errors, use of

undeclared identifiers, incorrect number of ar-

guments for a method call, type errors

• Dynamic errors. These fit into two categories

– There are several sources of undefined be-

haviour, i.e., situations where the language

definition does not specify what an ac-

tion means. Examples of undefined behav-

iour include array’s being indexed out of

bounds, arithmetic overflow, two threads

accessing the same memory location at the

same time where one access is a write.

– Failure to ensure the desired output or the

desired course of action. In this case the

program behaves in a way defined by the

language definition, but it does not behave

in the way intended by the designer of the

software.

Static errors can be prevented statically, using

standard compilation techniques.

The aim of the present work is to create a method

whereby all dynamic errors can also be found. Our

intention is that

A common approach to finding and diagnosing

dynamic errors is testing. While software testing

is very useful for many reasons, it is not suitable

for ensuring that software is free of all dynamic

errors. First any test only really gives us information

about one possible input. Information about that one

input might lead to some reasonable assumptions

about similar inputs, but the highly nonlinear nature

of software means that reasonable assumptions are

often not true. Furthermore because the language

is inherently nondeterministic, a passed test with

one input does not imply that the program’s be-

haviour for that input will always be acceptable.

What testing is useful for is for gathering examples

of behaviours that lead to dynamic errors; such

examples can be of great help to the engineer fixing

the program. I will say more about testing in the

concluding section.

The essence of our approach is to pass permis-

sions between thread and other threads or between

objects and threads. And to require that all memory

accesses to potentially shared locations be made

only by threads that have sufficient permission.

II. PERMISSIONS

Talking sticks are used in some Indigenous North

American societies to ensure that only one person

speak at a time. The stick is passed from person

to person and only the person who holds the stick

is allowed, by convention, to speak. In our system,

each location is associated with a permission and

only the thread that holds that permission may

write to the location. In order to prevent read/write

collisions, we also require that a thread must have

permission to read as well. Permissions may also

reside with objects. To allow multiple threads to

read a location at the same time, we allow a thread

to pass only a fraction of its permission to another

thread. We represent permissions as real numbers in

the interval [0, 1]. The conventions of the language

will ensure that the sum of all permissions existing

on a single location will always sum to 1 or less.

Thus if a thread has permission 1 on a location,

it is safe to write to the location and if it has

permission that is greater than 0, it is safe to read

from the location. This fractional permission system

is similar to that used in Chalice [3].

At run time, a Harpo program consists of a set

of locations, a set of objects, a set of arrays, and a

set of threads. Each location is capable of holding

any member some primitive type. Locations may

be fields of objects, items of an array, or top-level

locations. Some locations are local to a thread, but

these can not be shared, so we won’t worry about

them. For each thread or object t there is a mutable

map pt that maps permissions to real numbers in

the interval [0, 1]. As a global invariant we ensure,

for all locations l, (
∑

t
pt(l)) ≤ 1.

(class Ex1

obj i : int := 0 ;

claim i ;

invariant permissionOn(i) = 1 ∧ i ≥ 0
...

class)

Algorithm 1: A class with a claim

(class Ex2

obj j : int := 0

(thread claim j
...

thread)

class)

Algorithm 2: A thread with a claim

III. DETAILS

A. Initial distribution

As part of the start up process for a Harpo

program, all objects are created. This static nature of

Harpo is an artifact of its intended implementation

in hardware and its intended application in safety

critical systems. The language could be extended to

allow dynamic creation (and finalization) of objects.

In that case permission on existing locations would

need to be donated by the creating thread.

Each class declares the amount of permission its

objects will initially have on locations. For example

the class shown in Algorithm 1 declares that each

object of the class initially has full permission (1.0)

on its i field.

The invariant of the class says that the object

maintains full permission on the field.

Similarly threads may claim permission at start

up by a declaration as shown in Algorithm 2 . This

example shows that

Threads and objects may claim less than full

permission. For example, claim k@0.5 will claim

half permission on the location.

B. Forking

Threads can create child thread though parallel

composition and parallel looping. Each child thread

can claim some of parent’s permission. At the end

of a parallel command, all permission held by the

child threads is returned to the parent. For example

if the parent holds permission to all items of an

array, a parallel loop can be written as follows

(co i : 100 do

claim a(i)
S

co)

Here, each child thread obtains permission from

its parent on one item of the array.

C. Conditional critical sections

In Harpo, threads can attain exclusive access by

locking an object. The command is

(with o when G do S with)

where o is an object reference G is an optional guard

and S is a command. Essentially, this is Hoare’s

conditional critical section [4]. At most one thread

can lock any object; a thread that tries to lock an

already locked object will wait until it can gain

exclusive access to the object. At the start of s, the

object’s invariant may be assumed. For example, if

the class of the object o is Ex1, the designer may

assume that prior to the execution of S, o has full

permission on o.i and also that o.i ≥ 0. During

the execution of S, the permissions of the thread

are added to the permissions of o (and any other

objects locked by syntactically surrounding code)

and so if S reads or writes to o.i, that is allowed. It

is an obligation on the designer to ensure that the

object’s invariant true when the object is locked. So

if S were

o.i := o.i− 1

it would be an error. On the other hand code, if S

were

(if o.i > 1 then o.i := o.i− 1 if)

that would be fine.

Object invariants must be self-supporting in that

they must guarantee that any change made by a

thread that has not locked the object will not cause

the invariant to change from true to false. Looking

again at Ex1, if the invariant were simply i ≥ 0,

that would not be self-supporting since a thread

(class Ex3

obj k : int := 0
obj a : array 100 of int

claim k, {i ∈ {k, ..100} · a(i)}
invariant permissionOn(k) = 1
∧ 0 ≤ k ≤ 100
∧ (∀i ∈ {k, ..100} · permissionOn(a(i)) = 1)

...

class)

Algorithm 3: A class with a dynamic frame

that has not locked the object could change i if it

had permission 1 on the location. The idea of self-

supporting invariants is a form of dynamic framing

[5].

Threads can use conditional critical sections to

transfer permission from and to objects. Consider

an object with class Ex3 in Algorithm 3. The claim

here claims all locations in the array.

A thread can obtain permission on a segment of

the array with

(with o when o.k ≥ 10 do

takes {i ∈ {o.k, ..o.k + 10} · o.a(i)}
p := o.k

o.k := o.k + 10
with)

The takes annotation indicates that permission on

10 locations should be transferred from the object

to the thread at the start of the conditional critical

section. Since the object’s invariant is assumed, at

the start, it can be inferred that the object has the

permission. Similarly permission can be given by

the thread to the object at the end of a conditional

critical section. For example a thread that has full

permission on items. For example a thread could to

the following, provided it started with full permis-

sion on items {p, ..p+ 10} of array o.a:

(with o when o.k = p+ 10 do

o.k := p

gives {i ∈ {p, ..p+ 10} · o.a(i)}
with)

(class Server

public method start(
in p : int, in q : int, out s : real)

pre 0 ≤ p ≤ q ≤ 100
takes {i ∈ {p, q} · a(i)@0.5}
post s′ = (Σi ∈ {p, q} · a(i))
gives {i ∈ {p, q} · a(i)@0.5}

...

class)

Algorithm 4: A class with a method declaration

D. Rendezvous

While conditional critical sections provide a low-

level mechanism for inter-thread communication

and coordination, rendezvous provide a higher-level

mechanism.

Each class can declare methods. Methods are

annotated by pre- and postconditions. Clients must

ensure preconditions are true prior to the call.

Servers must ensure that the postconditions are

true after the call. It is also possible to transfer

permission from the client to the server at the start

of the call (takes) and from the client to the server

(gives). For example a class might declare a method

as shown in Algorithm 4.

The server takes 50% permission on some of the

locations of an array, sums the members of the array

and then returns the permission back to the client

thread. The client must have sufficient permission to

start and is responsible for ensuring the precondition

is true at the time of the rendezvous.

E. Other features

Some other features supported include ghost

fields, assert commands, assume commands, and

loop invariants.

IV. CONCLUSIONS AND FURTHER WORK

In order to verify code using the annotations,

we can translate to the Boogie IVL [6]. Although

this translation is not yet automated, the method of

translation has been worked out and tested manually.

This work is reported in the thesis of Yousefi

Ghalehjoogh [7] and will be detailed in a future

publication.

In order to allow full functional specification and

verification the language needs to be extended to

include features such as functions and predicates as

in Dafny [8].

Future work includes automation of the transla-

tion. Experimentation with the current system of

annotation and with more features.

REFERENCES

[1] T. S. Norvell, M. A. A. Tuhin, X. Li, and D. Zhang, “HARPO/L:

A language for hardware/software codesign.” in Newfoundland

Electrical and Computer Engineering Conference (NECEC),

2008.

[2] T. S. Norvell, “A grainless semantics for the HARPO/L lan-

guage,” in Canadian Electrical and Computer Engineering Con-

ference, 2009.

[3] K. R. M. Leino, P. Müller, and J. Smans, “Verification of

concurrent programs with Chalice,” in Foundations of Security

Analysis and Design V, ser. LNCS, vol. 5705, 2009.

[4] C. A. R. Hoare, “Toward a theory of parallel programming,” in

Operating Systems Techniques, C. A. R. Hoare and R. H. Perrott,

Eds. Academic Press, 1972.

[5] I. T. Kassios, “Dynamic frames: Support for framing, depen-

dencies and sharing without restrictions,” in FM 2006: Formal

Methods, ser. LNCS, vol. 4085, 2006.

[6] K. R. M. Leino, “This is Boogie 2,” Microsoft

Research, Tech. Rep., 2008, draft. [Online]. Available:

http://research.microsoft.com/apps/pubs/default.aspx?id=147643

[7] F. Yousefi Ghalehjoogh, “Verification of the harpo language,”

Master’s thesis, Memorial University, 2014.

[8] K. R. M. Leino, “Developing verified programs with Dafny,”

in Proceedings of the 2013 International Conference on

Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA:

IEEE Press, 2013, pp. 1488–1490. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2486788.2487050

