
Butterflies in space: High-performance,
FPGA-based signal processing on a satellite

Theodore S. Norvell
Department of Electrical and Computer Engineering

Memorial University of Newfoundland
theo@mun.ca

Abstract—The Killick-1 satellite is currently being designed
to produce delay-Doppler maps of the earth. Because both
bandwidth and energy are scarce, the signal processing needs to
be done in real-time, on a small space craft, and using low power
and little energy. Our solution was to use an FPGA and employ
parallelism. This paper discusses our use of parallelism at three
levels: At the highest level, task parallelism; in the middle, data-
parallel processing; and at the lowest level, careful scheduling.
The result is an implementation that meets the goals of the project
on modest, low-power, hardware.

CONTENTS

I Introduction 1

II Delay-Doppler maps 1

III The Killick-1 mission payload 1

IV The hardware context 3

V Algorithm design 3
V-A Macrolevel parallelism: Task parallelism 3
V-B Mesolevel parallelism: Data parallelism 3
V-C Microlevel parallelism: Scheduling ba-

sic blocks. 4

VI Roads not taken 5

VII Conclusion and thanks 5

References 5

I. INTRODUCTION

In the spring of 2021, with about 1 1
2 years to our planned

launch date, no student team picked up the payload aspect of
the project, leaving the project with a large hole. Much of
the design of the digital processing fell to me. This paper
is an experience report on the design and implementation
of a particular signal processing algorithm under significant
performance constraints. I’m going to focus on the algorithmic
and parallelization aspects.

II. DELAY-DOPPLER MAPS

Consider two stationary bats. One is chirping a pseudo-
random tune. We can assume the tune has only two notes
which we’ll represent by +1 and −1 and that it is repeated

as soon as it ends. The other bat is listening to the tune as it
echos off of an insect flying toward the second bat. The insect
will distort the melody in two ways. First, the melody will
be delayed an amount of time that depends on the distance
from the chirping bat to the insect and then to the listening
bat. Second it will be sped up by an amount depending on the
rate at which the length of that path is changing.

Suppose the listening bat multiplies the echo u with a
recording of the melody v,shifted by an amount τ . If the
recording and echo are not too out of phase, the product,
λt · u(t)v(t − τ), should be a sine wave with frequency
determined by the Doppler frequency associated with the rate
of change of the path length. We can compare this function
with a general sine wave of a given frequency f to see if there
is a correlation. For a given delay τ , frequency f , and time
period (t0, t1), we can compute the correlation for that time
period as[1]

Υ(τ, f, t0, t1) ,

∣∣∣∣∫ t1

t0

u(t)v(t− τ)e−2πift dt

∣∣∣∣2
We can repeat this a number N of times over a period (t0, t0+
N∆) to reduce the effect of noise:

DDMt0,N,∆(τ, f) =

N−1∑
p=0

Υ(τ, f, t0 + p∆, t0 + (p+ 1)∆)

This function is a delay-Doppler map (DDM).

III. THE KILLICK-1 MISSION PAYLOAD

The Killick-1 is a small satellite being designed at Memorial
Unversity and C-Core largely by student teams and work-
term students [2]. The mission of the satellite is to collect
DDM images of the earth. We use GPS signals transmitted
by satellites in medium-earth orbit. While a small amount of
these signals hit antennas inside watches, cell phones, and
sat nav systems, most of the signal bounces off the surface
of the planet and back to space. The Killick-1 in low-earth
orbit receives these reflected signals and processes them to
make DDMs. We use the coarse-acquisition signals of the GPS
sattelites. While all GPS satellites use the same frequency for
this signal, each broadcasts a unique pseudo-random sequence
of 1023, +1s and −1s over the course of 1

32 ms and then
repeats. There are 32 such sequences, known as Gold codes,
and they have the properties of having low autocorrelation and

Fig. 1. Data flow of the algorithm

low correlation with each other. Thus we can ‘tune’ into one
satellite by using its Gold code as a reference signal, much
as the human auditory system can tune into one voice in a
crowd.

We integrate using a numerical approximation

Υ(τ, f, t0, t1) u

∣∣∣∣∣∣ 1

NS

NS∑
j=0

u(t0 + jδ)v(t0 + jδ − τ)e−2πif(t0+jδ)

∣∣∣∣∣∣
2

where δ = (t1 − t0)/NS . We use NS = 32, ∆ = 1 ms and
hence δ = 1

32 ms. We are interested in values of f from 0
to 31 kHz with 1 kHz spacing. Let fk = k kHz, after some
algebra we have

Υ(τ, fk, t0, t1) ≈
∣∣∣∣ 1

NS
DFT(x(t0, τ))k

∣∣∣∣2
where x(t0, τ) is a vector of 32 elements with x(t0, τ)j =
u(t0 + jδ)v(t0 + jδ− τ). Thus we can compute the DDM as

DDMt0,N,∆(τ, fk) ≈
N−1∑
p=0

∣∣∣∣ 1

NS
DFT(x(t0 + p∆, τ))k

∣∣∣∣2
We need an estimate for u(t)v(t−τ) 32 times per millisec-

ond for N milliseconds starting at time t0 and for each delay
that we are interested in. We estimate each value u(t)v(t− τ)
by summing 510 products in the vicinity of t.

We typically have an exposure time of 1s, so N = 1000. To
make the row for one delay, we need to calculate u(t)v(t−τ)
510 times, summing the results, in 1/32 ms – This is repeated
32 times to produce a vector of 32 complex values every
millisecond. We expand this vector to length 128 by appending
0s and apply Hamming windowing before doing a 128 point
FFT. We select 32 values from this vector and square them

to make a real vector of length 32. This process is repeated
N (typically 1000) times to produce N vectors which are
added together to produce final length real vector of length
32. By doing 128-point FFT, we get a frequency granularity
of 250 Hz. The selection of 32 values reduces the size of the
DDM while allowing one to zoom in on the frequencies of
most interest.

As mentioned, the Gold code of 1023 values is replayed
every millisecond, each value is called a chip and so there are
1.023 million chips per second. Each chip is represented by
16 bits, thus each bit period is about 61 ns, coresponding to
16.368MHz. Our DDMs have 130 delays with a spacing of
2, 4, 8, or 16 bit periods. Thus the process of the paragraph
above is repeated 130 times. Here is the algorithm. F is a 130
by 32 real array in which the DDM is accumulated; the value
of ε is one bit period; W is a vector containing the first 32
values of a 128-point Hamming window; g is a gain factor
used to scale the values so that their sum will not overflow;
and sel is a linear function that maps {0, ..32} to {0, ..128}.

F := 0
for p ∈ {0, ..1000}

for r ∈ {0, ..130}
var X : array {0, ..128} of C :=

−→
0

for j ∈ {0, ..32}
var a : C := 0
for q ∈ {0, ..510}

a := a+ x(t0 + p∆ + jδ + qε, τ(r))
X(j) := a×W (j)

FFT(X)
for k ∈ {0, ..32}

F (r, k) := F (r, k) + g × |X(sel(k))|2

Figure 1 shows the data flow implied by this algorithm.

IV. THE HARDWARE CONTEXT

The Killick-1 bus is a roughly 10 cm×10 cm×20 cm box.
Within that we have a stack of aproximatley 10 cm×10 cm
printed circuit cards comprising a power system, an attitude
determination and control system, a GPS receiver to obtain
positions, a GPS receiver for making DDMs, a radio for
communications, and a computer for controlling all functions
of the satellite. The computer board chosen is an Abacus
2019 made by Gauss. This board contains an MSP 432 micro
controller, some flash memory and, most importantly for this
paper, a Xilinx Spartan 3E XC3S500E FPGA. The FPGA
resources include

• 4,656 slices each containing
– 2 flip-flops
– 2 4-input LUTs
– A few other gates and MUXs

• 20 dual-port memories, each holding 1024 18-bit words.
• 20 multipliers with 18 bit inputs and an 18 bit output

It runs with a 100MHz clock for a 10 ns cycle time.
Each DDM requires over 64 megabits of input, while this

could be stored and processed at a later time, the number of
DDMs that could be produced in one pass over our target
imaging area would be limited by storage considerations.
Instead the decision was made to produce DDMs in real time.

Besides the FPGA, other important components of the
paylod system include a patch antenna, and a custom board
based on the MAX2769 GPS receiver from Maxim Integrated.
This is configured to produce a four bit output at 16.368 MHz.
The output values represent values in the set

{a+ bi | a, b ∈ {−3,−1,+1 + 3}}

After shifting this input signal to base band, we have our signal
u.

V. ALGORITHM DESIGN

The Abacus board with its small, dated FPGA were picked
before the implementation of the DDM algorithm was given
much consideration and so the issue of whether and how all
calculations could be done in real-time became an important
unanswered question.

In the spring of 2021, with about 1 1
2 years to our planned

launch date this question loomed large. However no student
team picked up the payload aspect of the project, leaving the
project with a large hole. We decided to complete the payload
using co-op students. Des Power of C-Core designed the high
level algorithm presented above and I agreed to design the
digital hardware to implement it with some guidance from
Phillip Jales’s thesis [3].

As can be seen, there is a lot of potential for parallelism.
However limited hardware resources mean we need to be
careful about how parallelism is used. The design exploits
parallelism at three levels.

A. Macrolevel parallelism: Task parallelism

To avoid storing the input, the calculation of a needs to
happen at the same rate as the bits are arriving from the
receiver. This suggests it should be its own process. As a first
step we split the computation into three phases: Phase 0, clears
the F array. Phase 1 computes an array we call the T array,
which is 1000 pages by 130 rows by 32 columns of complex
numbers one column at a time. Phase 2 does the windowing,
FFTs, selection, magnitude calaculation, and adds to F one
row at a time. Once phase one has calculated a page, phase
2 can start processing it. This suggests that we represent 2
pages of the T array at a time, one being filled by the phase 1
process and the other being processed by the phase 2 process.
Thus at a high level we have

F := 0
(

for p ∈ {0, ..1000} (Phase1(T (p, ,)
‖

for p ∈ {0, ..1000} (Phase2(T (p, ,))
)

Not shown is coordination so that, the Phase2 process does
not begin work on a page until Phase1 has finished producing
it. This scheme means that only two pages of T need to be
represented at once, provided Phase 2 can keep up. Unfortu-
nately double buffering would use too much memory; we had
room for 52 columns in TRep, our representation of T rather
than the 64 required. We ended up using what might be called
‘fractional buffering’. In general column j of page p of T is
represented by column (32 × p + j) mod 52 of TRep. Since
we have only 20 excess columns, phase 2 must be almost
complete before phase 1 starts to fill the 21st column. Each
page takes 1 ms to fill, so phase 2 must process 130 rows in
0.625 ms.

B. Mesolevel parallelism: Data parallelism

Within phase 1, each delay is treated in parallel. We have
130 summator units to which the u signal is distributed. The
v signal is passed through a chain of 130 delay units, each of
which feeds a separate summator. Each summator is respon-
sible for multiplying the u and v values —since the values
on v are either +1 or −1, this requires simple hardware—
and accumulating the sum. This process is data-driven in that
the summators and the delay chain react whenever a new
value appears on the u input. After 510 values have been
accumulated, the sum is transferred to a holding register. The
holding registers are then transferred to the appropriate column
of the TRep array.

The TRep array is divided horizontally into 10 segments
each holding 13 rows. Each segment is held in a different
memory. Data is transferred from the holding registers to the
TRep array sequentially for each segment of 13 summators.

In terms of memory space the each segment of the TRep
array uses 3 bytes per entry. That makes 2028 of the 2048
bytes in one memory. So 10 of our 20 memories are devoted

Fig. 2. The phase 2 data path

to the TRep array. The remaining 10 memories are used in
phases 0 and 2. Phase 1 now looks something like this

par for s ∈ {0, ..10} , r ∈ {0, ..13}
for p ∈ {0, ..1000}

for j ∈ {0, ..32}
a(s, r) := 0
for q ∈ {0, ..510}

a(s, r) := a(s, r) +
x(t0 + p∆ + jδ + qε, τ(r))

h(s, r) := a(s, r)
signal colDone

‖
par for s ∈ {0, ..10}

for p ∈ {0, ..1000}
for j ∈ {0, ..32}

wait for colDone
for r ∈ {0, ..13}

TRep(s, r, j) := h(s, r)
signal pageDone

Unlike phase 1, phase 2 requires a lot of memory operations;
this greatly limits parallelism. We decided to use a sequential
algorithm with data parallelism at the granularity of segments.
The F array is broken into 10 segments and each segment gets
its own X vector to use for input, output, and working memory
of the FFT.

par for s ∈ {0, ..10}
for p ∈ {0, ..1000}

wait for pageDone
for r ∈ {0, ..13}

Fig. 3. Scheduling of the butterfly basic block

for j ∈ {0, ..32}
X(s, j) := T (p, r, j)×W (j)

for j ∈ {32, ..128}
X(s, j) := 0

FFT(X(s,))
for k ∈ {0, ..32}

FRep(r, k) := FRep(r, k) +
g × |X(s, sel(k))|2

For each segment the X vector requires 256 18-bit words
and the segment’s portion of the FRep array requires 416
entries,each 3 9-bit bytes. The total makes 1,760 9-bits bytes
per segment, taking up most of the remaining 10 memories.
The remaining space is used to hold the 32 windowing
constants and 33 constants needed by the FFT algorithm.

C. Microlevel parallelism: Scheduling basic blocks.

To fit all the logic required for phase 2 in the space available,
I designed one data path capable of doing the copy-and-
window, the FFT, and the add-to-F subphases. Since this data
path is replicated 10 times, it needed to be small. The resulting
data path is shown in Figure 2. It consists of one muliplier a
few adders and a few registers.

Each inner loop body was carefully scheduled to execute
in as few cycles as we could manage. This design was done
concurrently with data path design. Here I’ll only discuss the
FFT inner loop body, known as a butterfly operation. In terms
of complex operations the butterfly operation is

val p := X(pi) ; val r := X(qi)× ω(ks)
X(pi) := p+ r ; X(qi) := p− r

Normally a 128-point FFT requires 7 rounds of 64 but-
terflies. However, as we know that the last 96 inputs are 0,

Fig. 4. Final HW design

the first 2 rounds consist only of copying numbers and can be
combined with the copy and window subphase. Thus each FFT
has 320 butterfly operations. In the end a 10 cycle butterfly
proved fast enough. An entire FFT can be completed in 3,220
cycles. Adding in the other tasks, each iteration requires about
4,000 cycles, and 13 iterations about 52,000 cycles, which is
well less than the 62,500 cycles that we have. The 10 cycle
schedule for the butterfly operation is shown in Figure 3.
Stars represent memory requests, trapezoids represent memory
operations, rectangles represent registers.

Figure 4 shows an outline of the hardware design to
implement our algorithm.

VI. ROADS NOT TAKEN

We tend to present designs in their final form as if they were
the first idea that came to us. This is rarely the case; design
is an iterative process that interacts with implementation.
With severe implementation constraints, design can not fully
preceed implementation. For much of the project, our design
assumed 20 segments each covering 6 or 7 rows, and each
having one multiplier and one memory. The motivation was
clear: since there are a lot of multiplications, use all the
multipliers.

As it developed there were both space and time problems.
Twenty data paths take up a lot of slices and this took more
space than we had. The decision was made to cut the number
of segments to 16 reducing the rows number of rows per DDM
to 112. However there is still a time problem. With an X
vector, 7 rows of the TRep array, and 7 rows of the FRep
array all in one memory, the TRep array could only have 40
columns. 40 − 32 is 8 and 8 is one quarter of 32 meaning
that phase 2 must complete in 0.25 ms. An 8-cycle butterfly
schedule met the time limit. But, on implementation, it turned
out that 2 additions could not complete in 1 cycle as required
by the schedule. Carry look-ahead logic might have solved
that problem, but at the cost of a larger data path.

The solution came, as solutions so often do, in the shower.
By having 10 segments instead of 20, we save 5, 120 bytes
of space by only needing 10 X vectors rather than 20. This
space can be used to make the T array 12 columns wider,
increasing the phase 2 time limit by a factor of 20

8 = 2.5. The
number of rows per segment (minus 1) and hence the amount

of work to be done in that time increases by slightly less than
12
6 = 2.0. The amount of work per unit of time changes by

a factor of slightly less than 2.0/2.5 = 0.8, which is enough
to allow a change from 8 cycles to 10 for each butterfly. Less
parallelism means less space, obviously, and, surprisingly, a
significantly lower work/time requirement for the sequential
algorithm. That decrease in required speed more than makes
up for the decrease in parallelism.

VII. CONCLUSION AND THANKS

Some lesson that can be learned include.
• Design is iterative and entwined with implementation.
• Keep the implementation flexible enough to accomodate

late changes to the design. We had done that and changing
the memory layout, giving each segment two memories,
and cutting the number of segments was remarkably easy.

• Parallelism has hidden as well as obvious costs. Under-
standing these can be crucial.

• Careful consideration of parallelism at the algorithmic
level is important.

This paper has focused on algorithmic design and compo-
nents in the data flow. I haven’t even touched on numerical
considerations, on the address path —for creating memory
addresses— and the control path —which for phase 2 consists
of a state machine of about 70 states. All of this needs to be
prototyped in software, and then expressed in synthesizable
VHDL and thoroughly tested at the unit and system levels,
which is a tremendous implementation effort especially for
engineering students (and professors) learning both VHDL and
the various simulation and synthesis tools.

I would like to thank Weimin Huang and Des Power for
initiating the Killick-1 project, co-supervising the payload
teams and much more. Co-op students Andrew O’Brien,
Charles Smith, and Dustin Smith contributed greatly to the
VHDL implementation.

REFERENCES

[1] D. Yang and F. Wang, Multifunctional Operation and Application of GPS.
IntechOpen, 2018, ch. GNSS Application in Retrieving Sea Wind Speed,
pp. 89–116.

[2] A. Quadri and G. Deveaux, “Preliminary design of the Killick-1 earth
observation cubesat,” in Proceedings of NECEC, 2019.

[3] P. Jales, “Spaceborne receiver design for scatterometric GNSS reflectom-
etry,” Ph.D. dissertation, University of Surrey, Jul. 2012.

