
Cogent: Code generation from statecharts for
real-time reactive code

Theodore S. Norvell
Department of Electrical and Computer Engineering

Memorial University of Newfoundland
theo@mun.ca

Abstract—David Harel’s statecharts, which have been stan-
dardized as UML’s StateMachine diagrams, provide an excellent
way to describe the high-level behaviour of reactive, real-time,
concurrent systems.

However, manual translation of diagrams to code in an
ordinary programming language can be error prone and lead
to code that is hard to read. Furthermore, once diagrams are
manually translated to code, keeping the diagrams and code
consistent as the software evolves is a doomed cause.

This paper presents a diagrams-as-code approach that starts
with a modular, textual description of statecharts using the widely
used PlantUML notation. From that description, the existing
PlantUML tool generates a set of diagrams and a new tool,
Cogent, generates code in the C programming language. A
further benefit is that we get non-preemptive concurrency and
deterministic behaviour.

CONTENTS

I Introduction 1

II Statecharts 1

III The problems with statecharts and their mitiga-
tion 2

IV The Cogent tool 3
IV-A Other constructs 4

IV-A1 Time triggers 4
IV-A2 Guards and choice pseu-

dostates 4
IV-A3 else guards and ‘in’ guards . 4
IV-A4 Send actions 4
IV-A5 Submachines, entry points,

and exit points 4
IV-A6 Entry, exit, internal, and do

actions 4
IV-A7 History, deep history, fork,

join, and junction, pseu-
dostates and final states . . . 4

IV-B Implementation 4

V Conclusion 5
V-A Related work 5
V-B Reflections 5
V-C Acknowledgements 5

References 5

I. INTRODUCTION

We present a tool for translating statecharts to space efficient
code for embedded systems.

This paper presents a quick introduction to statecharts and
the problems with using statecharts, describes the tool built,
and concludes with some reflections on the project.

II. STATECHARTS

Statecharts were invented by David Harel in the 1980s [1].
In the 1990s they were incorporated into the UML standard
under the name “StateMachine Diagrams” [2].

Statecharts extend ordinary finite state machines in two
ways:

1) Hierarchy. States can contain substates. This allows
common transitions to be shared.

2) Concurrency. A state can contain multiple regions, each
of which contains a set of states. All regions on a state
operate concurrently.

The combination of hierarchy and concurrency allows very
complex systems to be modelled far more concisely that with
ordinary state machines.

Each statechart has one region called its root region. Each
region contains a set of states, one of which is designated
its initial state. Each state can contain a set of zero or more
regions. Thus the regions and states with the relation of
containment form a bipartite graph which is a rooted tree.
This tree is finite and contains all the states and regions of the
statechart.

A configuration of a statechart is a set of states and regions
with the following properties:

1) The root region is in the configuration.
2) If a region is is in the configuration, exactly one of its

children is in the configuration.
3) If a state is in the configuration, all its children are in

the configuration.
4) If a state or region is in the configuration, all its ancestors

are in the configuration.
Since the regions of a configuration can be inferred from the
states, I won’t list regions in configurations.

Figure 1 shows an example statechart. The root region
contains states A and B. State A contains one region with
two states. State B contains two regions, each with two
states. The remaining six states have no regions. There are

Fig. 1. A Statechart

six configurations. The initial configuration is {A,A0A}, with
the root region and the region in A being implicitly included.
The black disks are not states, but serve to indicate the initial
states.

When an event occurs, the statechart transitions from one
configuration to another. Edges in the statechart travel from
one state (its source) to another (its target). When an edge is
followed, the source state and all its ancestors up to the least
common ancestral region are removed from the configuration;
the target state is added along with all its ancestors up to
the least common ancestral region. In order that the new
configuration follows the rules above, if a state is removed
from a configuration, so are all its regions and if a state is
added to a configuration, so are all its children.

Edges leaving a state are labelled with triggers, guards and
actions. In Fig. 1, there are no guards. Triggers are shown
as capital letters, X through Z; each trigger describes a
set of events. Lower case letters represent actions; actions
describe actions to be executed. Suppose a sequence of events
W,X,W,Z,W,X occurs. The sequence of configurations will
be:

{A,A0A} W−→ {B,B0A,B1A}
X−→ {B,B0B,B1B}
W−→ {B,B0A,B1B}
Z−→ {B,B0A,B1A}
W−→ {A,A0B}
X−→ {A,A0B}

The first X event shows concurrency. In this case both the
transition out of B0B and that out of B1B are followed
as they these states are in separate regions of state B. The
second W event shows an example of pre-emption. Although
there is a W transition out of B, the transition from B0B
has priority as B0B is a descendent of B. The final X
event shows that events are ignored if no transition out of
a state that is in the configuration applies. The sequence of
events implied is g; (k ∥ m); j;n;h. Conceptually k and m
execute concurrently, but one interpretation of this is that
they execute sequentially, but in an undefined order. This is
the interpretation that we will take and it allows statecharts
to express concurrency while running in a single underlying
thread.

UML defines a number of other features of statecharts, some
of which will be discussed later.

III. THE PROBLEMS WITH STATECHARTS AND THEIR
MITIGATION

Statecharts are understood to be useful in modelling and
designing the behaviour of event-driven systems, such as
embedded systems.

The usual approach to designing with statecharts is to use
statecharts for high-level design, but then to manually translate
statecharts to code. This approach has a few problems:

1) Translation to code is a tedious and error prone task.
2) The code will be hard to read compared to the diagrams,

meaning that the statecharts should be kept as crucial
design documentation.

3) Thus, as the design evolves, the statecharts and the code
need to be maintained in parallel and kept consistent.
This is time-consuming and error prone.

A separate problem is that if the statecharts are created using
a graphical tool such as Visual Paradigm or Draw.io, it can
be hard to understand changes to the diagram as the software
evolves, as diagram differencing is not straight-forward and
rarely, if ever, supported; at the same time it is important to
check that changes to the diagrams and changes to the source
code are concordant.

Issues related to manual translation can be overcome by
using translation software to translate diagrams to source code
in a conventional language. Several tools and approaches to
translating statecharts have been implemented or proposed.

Issues related to difficulty in visualizing differences can be
mitigated by using a text based description of the statecharts —

an example of “diagrams as code”, although “diagrams as text”
might be a better term. This allows common text differencing
software, such as ‘git diff’ to be used to highlight the differ-
ences between versions. It also allows revision control systems
such as git to merge independent changes automatically.

Of course using a text-based description alone means losing
much of the appeal of statecharts, as a graphical represen-
tation allows the brain’s visual processing system to aid in
comprehension; therefore it goes almost without saying that
the textual descriptions will be used to generate diagrams. I
think this is only a partial mitigation because looking two
diagrams and the differences between the two text files that
describe them is cognitively demanding. Visualizing merges
of changes requires comparing three or four versions of a file
and is even worse. A graphical tool to show how a diagram
has changed from one version to another or how two diagrams
were merged to make one would be useful.

There are a number of textual languages that can generate
diagrams from textual descriptions [3], [4], [5]. Among these,
the PlantUML language [3] is particularly interesting; rather
than using one language for many types of diagrams, Plan-
tUML is more of a collection of domain specific languages,
each intended for describing a particular category of diagrams;
PlantUML includes a sublanguage specifically for describing
UML statecharts.

Combining code generation with “diagrams as code” we
get “code as diagrams as code”, i.e. we replace writing source
code with drawing diagrams and replace drawing diagrams
with describing them with text.

IV. THE COGENT TOOL

In developing software for the Killick-1 satellite at Memo-
rial University and C-Core [6], we faced a complex system
that clearly needed some concurrency. For example, we would
need to control the attitude of the satellite concurrently with
data collection. Statecharts seemed a good solution for design,
but the problems mentioned in the previous section served as
a deterrent. After some searching, PlantUML appeared to be
a good solution for generating diagrams, but we were not
able to identify a good existing solution for automatically
generating the sort of code that we needed, i.e., code in
the C programming language that used very little RAM.
I volunteered to create a code generator and gave it the
uninspired name Cogent.

Cogent uses a subset of the PlantUML language as its input
language; PlantUML allows any text at all as labels on edges,
but Cogent parses this text and requires it to follow a particular
syntax consisting of three parts, each optional: a trigger, a
guard, and a sequence of actions. A trigger is either the name
of a class of events or time trigger (described later); a guard is
either a boolean expression or the keyword “else”. An action
is is simply a name. Aside from checking for

The C code generated consists of two procedures represent-
ing a state machine. One for initializing and one for processing
events. The code that produces events and that decides when

Listing 1. Generated code
1 bool t dispatchEvent figs (event t *event p,
2 TIME T now) {
3 bool t handled = false ;
4 switch(currentChild a [G INDEX root]) {
5 case L INDEX A: {
6 bool t handled A = false ;
7 code for A’s region
8 if (! handled A) {
9 switch(eventClassOf(event p)) {

10 case EVENT(W) : {
11 status t status = OK STATUS ;
12 handled A = true ;
13 exit A(−1) ;
14 status = g(event p , status) ;
15 enter B(−1, now) ; } } }
16 handled Root = handled A ; }
17 break ;
18 case L INDEX B: {
19 bool handled B = true ;
20 code for one region
21 code for other region
22 if (! handled B) {
23 event handling code for state B }
24 handled = handled B ; } }
25 return handled ;
26 }

to feed an event to the generated state machine is not gen-
erated. These procedures depend on an call procedures that
must be written conventionally elsewhere. These depended-on
procedures are of two sorts: Some represent atomic guards and
others represent actions.

For each region, we generate a switch statement to branch
to the code of a child state. For each state, we generate:

• Code for each region that is a child of the state.
• A switch statement that jumps to the code for each class

of event handled by the event. This entire switch is
skipped if the event has been handled by any descendent
state. The switch statement branches to the code for the
event class. When there are guarded edges, this will be
an if-statement; otherwise, it is code that implements
the transition. The code for handling a transition exits
any states that need to be exited, calls the user-provided
procedures representing actions and then enters any states
that need to be entered.

Listing 1 shows some of the generated event handling code
(slightly cleaned up) for Fig. 1.

The switch from line 4 to line 24 shows how a region is
translated. I’ve glossed over the code for other regions, as it is
similar. The cases from lines 5 to 16 and 18 to 24 show how
states are translated. The code from line 11 to line 15 shows
how a transition is translated.

Each state and region (with siblings) has an enter and exit

routine. The exit routine for a state exits all its regions except
for perhaps one; an exit routine for a region optionally exits
its current active state. The entry routine for a state enters all
its region except for perhaps one; an entry routine for a region
optionally enters its initial state. The reason for the optionality
is that the required entry or exit may already have been done
or soon will be done. For example, a hypothetical transition
from A0A to B0B would be coded as.

1 exit A0A(−1, now) ;
2 exit A(L INDEX A01, now) ;
3 enter B(L INDEX B region 0) ;
4 enter B region 0(L INDEX B0A) ;
5 enter B0B(−1) ;

The first argument to exit A indicates that there is no need to
exit from its region’s current state; this has already happened.
(Exiting A’s sole region is combined with exiting A.) The
argument to enter B indicates that it’s first region should not
be entered; all other regions will be entered. The argument to
enter B region 0 indicates that its initial state should not be
entered. One effect of the call to enter B will be to enter
its second region, this call to enter B region 1 will have
an argument of −1 indicating that its initial state should be
entered. Compare this to the call to enter B on line 15 of
Listing 1 which an argument of −1 meaning that all regions
should be entered at their initial state.

You can see from Listing 1, that, if B is in the current
configuration, its two regions each process the event; in this
way events are broadcast and we get a sort of concurrency as
multiple regions can process the same event. Transitions are
atomic in this model of concurrency. Only if neither region has
reacted to the event will B itself get a chance; this implements
pre-emption.

In terms of global state, we need a static array with one
entry for each region to keep track of the current state, a static
boolean array with one entry per state to keep track of whether
a state is in the current configuration or not. The demand for
stack RAM amounts to having a boolean variable for each state
that contains a region to note whether or not the current event
has been handled by that state or not. These variables can be
locally scoped so that the space requirement is proportional to
the depth of nesting.

The Cogent approach tries to give the user as much flex-
ibility as possible; in return some definitions need to be
provided. For example, the event t type is not defined by
Cogent’s generated code, but in return the user should provide
a definition for the ‘eventClassOf’ and ‘EVENT’ macros.

A. Other constructs

Here we will look at how Cogent handles most of the many
features UML statecharts. More information on these features
can be found at [2].

1) Time triggers: A trigger can be of the form “after(n
ms)” where n is an integer. In this case the transition is
triggered when the state has been in the current configuration
for at least n milliseconds. This requires an additional static

array to note the last time each state was entered. A special
kind of event called a TICK event is used for these triggers. It
is up to the code calling the event handler to pass in the current
time. Cogent imposes no notion of time on the programmer
other than that it can be converted to milliseconds. It’s up to
the writer of the event loop to ensure that TICK events are
sent frequently enough that the state machine meets whatever
real-time requirements the system has.

2) Guards and choice pseudostates: Transitions can be
guarded with boolean expressions. The atoms of these boolean
expressions are translated to calls to boolean functions which
must be supplied by the user.

Choice pseudostates are nodes where a transition can
branch. All the edges out of a choice pseudostate should be
guarded and must not have triggers. With choice states, a
transition from one state to another may involve a sequence of
edges; these are called compound transitions. Cogent supports
choice pseudostates.

3) else guards and ‘in’ guards: Cogent support both of
these.

4) Send actions: Cogent does not directly support send ac-
tions. Events can be created and queued from within the code
of actions. Cogent will translate an action written “!name” to
“send name” and so one can use this naming convention to
indicate which actions create new events.

5) Submachines, entry points, and exit points: UML pro-
vides a way to break large statecharts into smaller parts
called submachines. Support for submachines is essential to
handle large applications, and Cogent supports submachines
essentially as macros. Each submachine is defined in a separate
diagram. Entry points and exit points are pseudo states on the
boundary of a state. They allow compound transitions to cross
state boundaries without edges crossing state boundaries. As
such they are often used with submachines.

6) Entry, exit, internal, and do actions: None of these are
currently supported, but support should not be difficult.

7) History, deep history, fork, join, and junction, pseu-
dostates and final states: None of these features are currently
supported. History and deep history should not pose a problem,
as the current state of a region is remembered even when the
region itself is not part of the current configuration. Fork and
join are of limited use owing to PlantUML limitations. Junc-
tion pseudostates are not supported by PlantUML. Final states
require completion events to be generated by the generated
code, which is somewhat at odds with our current approach
of leaving event creation to non-generated code.

B. Implementation

Cogent is implemented in Scala 3 using a largely functional
style. The translator has the following passes:

1) Parser: Parsing is done using components of PlantUML
as a library.

2) Middle end: The data structure produced by UML is
translated into an abstract syntax tree. During this pass
edge labels are parsed.

3) Submachine expansion. Occurrences of submachine
states are replaced with their definitions.

4) Checking: A number of checks are made to ensure that
the statechart can be further translated.

5) Back end: The abstract syntax tree is traversed to pro-
duce C code.

Because of this structure, targetting languages other than
C should be straight-forward. Furthermore, a different input
language could be used by replacing the first two passes with
a different parser.

The code generated is a little verbose, but its size essentially
linear with respect to the size of the statechart after subma-
chine expansion. In our project code size is not a limiting
constraint.

V. CONCLUSION

A. Related work

Converting statecharts to other languages is hardly a new
idea. Commercial tools have been available since the 1990s.
Recent academic projects have targetted object oriented lan-
guages and so were not of use to us. A summary of these
efforts up to 2012 can be found in [7]. A quick survey did not
turn up any tools suitable for our use case.

B. Reflections

I was a bit hesitant to go the route of generating code from
statecharts.

The first is that it required students working on the Killick-
1 project to learn a new language and a new paradigm; this
could also be seen as a positive. The students who have needed
to have learned to use statecharts effectively.

The second is that information must be passed between
actions and guards must be stored in static storage, something
that programmers are normally discouraged from doing; with
a multithreaded system such state could be stored in stack
variables and passed around via subroutine parameters. By
insisting that all static variables are local to a single module,
this disadvantage was somewhat mitigated.

The third was doubt that the time spent on implementing
Cogent could have been better spent elsewhere. It turned out
that the implementation effort didn’t take a great deal of time.
About 2,800 lines of implementation code and 300 lines of
test code have been written, including comments.

On the positive side: It avoids the need for multiple threads,
which have their own disadvantages. It makes it clear which
actions will be done atomically and which will not. It makes
a very clear layer boundary between the statechart code and
the C code. In our project, the statechart diagrams are linked
into the documentation for the project and so at least these
diagrams are always up to date.

Cogent is available for use by others at: https://github.com/
theodore-norvell/cogent

C. Acknowledgements

I’d like to thank the Canadian Space Agency who have
funded the Killick-1 satellite project in part, Desmond Power
of C-Core for leading the project, and the many many students
and co-op students who have contributed to the project.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, 1987.

[2] C. Bock, S. Cook, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and D. Tolbert,
OMG Unified Modeling Language, Version 2.5.1. Object Management
Group, 2017.

[3] “Plantuml,” Website, Accessed 2023. [Online]. Available: https:
//plantuml.com/

[4] “Mermaid,” Website, Accessed 2023. [Online]. Available: https:
//mermaid.js.org/

[5] J. Ellson, E. R. Ganser, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and dynagraph — static and dynamic graph drawing tools,” in
Graph Drawing Software. Springer, 2004.

[6] A. Quadri and G. Deveaux, “Preliminary design of the Killick-1 earth
observation cubesat,” in Proceedings of NECEC, 2019.

[7] E. Domingúez, B. Pérez, A. L. Rubio, and M. A. Zapata, “A systematic
review of code generation proposals from state machine specifications,”
Information and Software Technology, vol. 54, pp. 1045–1066, 2012.

https://github.com/theodore-norvell/cogent
https://github.com/theodore-norvell/cogent
https://plantuml.com/
https://plantuml.com/
https://mermaid.js.org/
https://mermaid.js.org/

	Introduction
	Statecharts
	The problems with statecharts and their mitigation
	The Cogent tool
	Other constructs
	Time triggers
	Guards and choice pseudostates
	else guards and `in' guards
	Send actions
	Submachines, entry points, and exit points
	Entry, exit, internal, and do actions
	History, deep history, fork, join, and junction, pseudostates and final states

	Implementation

	Conclusion
	Related work
	Reflections
	Acknowledgements

	References

