
1

Theodore Norvell
Dept. ECE, Memorial University of Newfoundland

CSER 2021

Upending Inversion of
Control

2

Theodore Norvell
Dept. ECE, Memorial University of Newfoundland

CSER 2021

Upending Inversion of
Control

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

3

Do you practice structured programming?
● Of course you do.
● We were taught to use structured control constructs such as

● loops
● ifs
● sequential composition (one damn thing after another)

● Goto statements are bad
● Subroutines are good
● Global state is bad.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

4

But,
do you practice structured programming

when you are handling events?

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

5

Events
● An event is anything a program may need to wait for

● In a GUI:
● user actions such as keypresses, mouse actions, 

button clicks, etc.
● In distributed or system:

● incoming requests and responses from clients, servers,
and peers.

● In a concurrent program
● changes of state
● messages on internal channels

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

6

Example: A use case
A Use case tells a story.

Use case: Greet the user forever

 0 The following sequence is repeated forever

 0.0 System: Prompts for name  
 0.1 User: Types in a name and presses “enter”  
 0.2 System: Greets the user by name

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

7

Example: A "console" program
proc main() 
 loop 
 print “What is your name?” 
 var name := readLine 
 print “Hello ” name “.”

The code tells a story. The structure of the story is reflected in
the structure of the code.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

8

Narrative structure
The structure of the console program follows the narrative of the
use case
Use case: Greet the user forever

 0 The following sequence is
repeated forever

 0.0 System: Prompts for  
 name  
 0.1 User: Types in a  
 name and presses  
 “enter”  
 0.2 System: Greets the  
 user by name

proc main() 
 loop 
 print “What is your  
 name?”  
 var name := readLine 
 print “Hello ” name “.”

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

9

But we want a GUI!

What is your name? Fred

Hello Fred.

Question NameBox

Reply

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

10

The GUI program
var nameBox := new TextField() 
var question := new Label(“What is your name”)  
var reply := new Label()

proc main() 
 nameBox.on(enter, nameBoxHandler)  
 show question 
 show nameBox 
 show reply

proc nameBoxHandler() 
 var name := nameBox.contents()  
 reply.text := “Hello ” name “.”

 
Where did the control structure go?

Event handler.
means inversion
of control.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

11

Unstructured

Use case: Greet ...

 0 The following sequence is
repeated forever

 0.0 System: Prompts for 
 name  
 0.1 User: Types in a  
 name and presses  
 “enter”  
 0.2 System: Greets the  
 user by name

var nameBox := new TextField  
var question := new Label(“W 
var reply := new Label()
proc main() 
 nameBox.on(enter, nameBo 
 show question 
 show nameBox 
 show reply
proc nameBoxHandler() 
 var name := nameBox.conte 
 reply.text := “Hello ” name “.”

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

12

Changing requirements
Use case: Greet the user forever

 0 The following sequence is
repeated forever

 0.0 System: Prompts for  
 name  
 0.1 User: Types in a  
 name and presses  
 “enter”  
 0.2 System: Greets the  
 user by name

proc main() 
 loop 
 print “What is your  
 name?”  
 var name := readLine 
 print “Hello ” name “.”

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

13

Changing requirements
Use case: Greet the user forever

 0 The following sequence is
repeated forever

 0.0 System: Prompts for  
 name  
 0.1 User: Types in a  
 name and presses  
 “enter”  
 0.2 System: Greets the  
 user by name

 0.3 Wait 1 second

proc main() 
 loop 
 print “What is your  
 name?”  
 var name := readLine 
 print “Hello ” name “.”
 pause 1000 ms

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

14

Changing requirements
var nameBox := new TextField() 
var question := new Label(“What is your name”) 
var reply := new Label() 
var timer := new Timer(1000 ms)

proc main() 
 nameBox.on(enter, nameBoxHander) 
 timer.on(done, timeHander) 
 show question ; show nameBox ; show reply

proc nameBoxHandler() 
 var name := nameBox.contents  
 reply.text := “Hello ” name “.” 
 hide question ; hide nameBox ; start timer

proc timeHandler() 
 stop timer ; show question ; clear nameBox ; show nameBox

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

15

State machines
● Inversion of control programs are state machines
● Unstructured programming all over again

− But worse
● Where are the states?

− Our program has two states
− Where are they in the code?

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

16

Inv. of control ≃ State machine

stop timer 
show question 
clear nameBox 
show nameBox

var nameBox := new TextField()  
var question := new Label(“What's your name”)  
var reply := new Label()  
var timer := new Timer()

  
show question  
show nameBox 
show reply

var name := nameBox.contents  
reply.text := “Hello ” name “.”  
hide question 
hide nameBox ; start timer

wait
for

enter

wait
for timer

nameBox.enter /

timer.done /

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

17

Inv. of control ≃ State machine

stop timer 
show question 
clear nameBox 
show nameBox

NEAR BUG! What if there is an enter event
while the timer is running? (The only reason
this won't happen is that I hide the
nameBox.)  

show question  
show nameBox 
show reply

var name := nameBox.contents  
reply.text := “Hello ” name “.”  
hide question 
hide nameBox ; start timer

wait
for

enter

wait
for timer

nameBox.enter /

timer.done /

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

What I would like
var nameBox := new TextField()  
var question := new Label(“What's your name”)  
var reply := new Label()

proc main()

 show reply

 loop 
 clear nameBox 
 show nameBox 
 show question

 getAndDisplayAnswer 
 hide question 
 hide nameBox
 pause 1000 ms

proc getAndDisplayAnswer  
 wait for enter on nameBox 
 var name := nameBox.contents 
 reply.text := “Hello ” name “.”  

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

What I would like
var nameBox := new TextField()  
var question := new Label(“What's your name”)  
var reply := new Label()

proc main()

 show reply

 loop 
 clear nameBox 
 show nameBox 
 show question

 getAndDisplayAnswer 
 hide question 
 hide nameBox
 pause 1000 ms

proc getAndDisplayAnswer  
 wait for enter on nameBox 
 var name := nameBox.contents 
 reply.text := “Hello ” name “.”  

state

state

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

20

The Problem
How can we write event-driven code in a

structured fashion?

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

21

The idea
Make a library based on process algebra
● Process algebras

● extend context-free grammars with
● interactivity
● concurrency
● communication
● internal and external choice

● Examples: CSP, CCP, π-calculus, ACP

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

22

Take Back Control*
Take Back Control (TBC)
● A library for

− Asynchronous I/O
− Cooperative multithreading
− Event-driven programming in general

● Written in the Haxe language
● Haxe transpiles to JavaScript, Python, and other

languages
● Abstracts away from inversion of control

* I had this name before the Brexit "Leave" campaign.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

23

Example
This is code written in Haxe using TBC.
				static	function	mainLoop()	:	Process<Triv>	{	return 
								loop		(clearText(nameBox)	> 
																show(nameBox)		> 
																show(question)	> 
																getAndDisplayAnswer()	> 
																hide(question)	> 
																hide(nameBox)	> 
																pause(1000))	;	}	

				static	function	getAndDisplayAnswer() 
				:	Process<Triv>	{	return 
										await(enter(nameBox)	&&	getValue(nameBox)) 
										>=	hello	;	}	

				static	function	main()	{ 
								...	create	the	GUI	... 
								mainLoop().run()	;	}

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

24

Processes
A generic type

Process<A>	

Each object of type Process<A>

• is immutable

• represents a specification of behaviour

• has a result type A

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

25

Processes
When p is a Process<A>

• p.run() starts running the process & returns immediately

• p.go(f,	g) similar with continuations

• f(a) if the run succeeds and

• g(e) if it fails

				static	function	main()	{ 
								...	create	the	GUI	... 
								mainLoop().run()	;	}

Build the view
Build a controller
process object

Run the controller

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

26

Making Process Objects
Some ways to make process objects

• pause(t)	

•when run, it waits t milliseconds
• the result is null	

• exec(f)	is a Process<A>

• when run, it calls closure f	:	()	->	A	

• the result is the value of f()	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

27

Making Process Objects
Some ways to make process objects

• pause(t)

• when run, it waits t milliseconds
• the result is null	

• exec(f)	is a Process<A>
•when run, it calls closure f	:	()	->	A	
• the result is the value of f()	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

28

Using exec
static	function	clearText(el	:	InputElement)	

		:	Process<Triv>	{	

				return	exec(()	->	{el.value	=	"";	null;})	;	}	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

29

Using exec
static	function	clearText(el	:	InputElement)	

		:	Process<Triv>	{	

				return	exec(()	->	{el.value	=	"";	null;})	;	}	

()	->	{el.value	=	"";	null;}		is a Haxe lambda expression	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

30

Using exec
static	function	clearText(el	:	InputElement)	

		:	Process<Triv>	{	

				return	exec(()	->	{el.value	=	"";	null;})	;	}	

()	->	{el.value	=	"";	null;}		is a Haxe lambda expression

show, hide, getText and putText are similar	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

31

Process combinators
Some ways to combine process objects

• p	>	q	

• run p and then run q.	

• p	>=	f	

• run p to get a result a

• then run the result of f(a)

• loop(p) run p over and over forever	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

32

Process combinators
Some ways to combine process objects

• p	>	q	

• run p and then run q.	

• p	>=	f	

• run p to get a result a
• then run the result of f(a)

• loop(p) run p over and over forever	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

33

Process combinators
Some ways to combine process objects

• p	>	q	

• run p and then run q.	

• p	>=	f	

• run p to get a result a

• then run the result of f(a)

• loop(p) run p over and over forever	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

34

Process combinators
Some ways to combine process objects

• p	>	q	

• run p and then run q.	

• p	>=	f	

• run p to get a result a

• then run the result of f(a)

• loop(p) run p over and over forever	

Monad inspired by parsing combinators

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

35

Our example

				static	function	mainLoop()	:	Process<Triv>	{ 
						return 
										loop(clearText(nameBox)	> 
																show(nameBox)		> 
																show(question)	> 
																getAndDisplayAnswer()	> 
																hide(question)	> 
																hide(nameBox)	> 
																pause(1000) 
)	;	 
				}	

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events

● getValue(nameBox)	

● makes a Process<String>

● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object

● await(...)

● makes a Process from the GuardedProcess.

● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

36

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events
● getValue(nameBox)	

● makes a Process<String>

● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object

● await(...)

● makes a Process from the GuardedProcess.

● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

37

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events

● getValue(nameBox)	

● makes a Process<String>
● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object

● await(...)

● makes a Process from the GuardedProcess.

● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

38

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events

● getValue(nameBox)	

● makes a Process<String>

● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object
● await(...)

● makes a Process from the GuardedProcess.

● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

39

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events

● getValue(nameBox)	

● makes a Process<String>

● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object

● await(...)

● makes a Process from the GuardedProcess.
● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

40

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

	static	function	getAndDisplayAnswer()	:	Process<Triv>	{	return 
								await(enter(nameBox)	&&	getValue(nameBox))	>=	hello	;	}	

	static	function	hello(name	:	String)	:	Process<Triv>	{	return	
								putText(reply,	"Hello	"+name)	;	}	

● enter(nameBox)	

● makes a Guard<js.html.Event> object representing events

● getValue(nameBox)	

● makes a Process<String>

● enter(nameBox)	&&	getValue(nameBox)	

● makes a GuardedProcess<String> object

● await(...)

● makes a Process from the GuardedProcess.

● await(...)	>=	hello	

● makes a Process that, when run, will update the reply label.

41

Guards represent events

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

42

Event-driven choice
● Given two guarded processes gp0 and gp1, 

 gp0	||	gp1 is also a guarded process
● The first event to happen wins.
● Combining use cases
					loop	(await(saveUseCase	

																			||		loadUseCase	

																			||		addItemUseCase 
																	 
																	||		deleteItemUseCase)

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

43

Things I don't have time to show
● Filtering events
● Or-ing events
● Parallel composition par(p, q) is a Process object.

● The two processes are run on the same thread!
● Exception handling
● Loops with exits
● Communication channels – being developed

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

44

Similar things
● promises

● provide some structure ✔
● not immutable (Promise is not a monad!) ✘
● handle choice poorly ✘

● async / await
● do not handle choice ✘
● part of the language ✘✔

● clojure.core.async
● similar
● relies on macros ✘

● actors
● executions as objects ✘✔
● only parallel composition ✘

● process algebras
● same idea ✔
● implementations? ✘

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

45

Conclusion
● TBC an extensible, embedded, domain-specific library

supporting
− Composition: sequential, parallel, choice, looping
− Abstraction via subroutines and parameters
− Recursion

● We can write code that
● is structured and subroutineable
● corresponds to use cases
● is easy to understand, modify, and maintain.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

46

Thank you
Read more at

 http://sourcephile.blogspot.com/2015/05/

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

47

Extending the framework
● You can easily extend the framework by creating your own

classes that implement the Process interface.

● You just extend class ProcessA<A> while overriding method

public	function	go(k	:	A	->	Void)	{	…	}

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

48

Implementing the Process Monad
● Each process p : Process<A> has a method  

 p.go(k : A -> void)
● The go method initiates the process.
● Its argument specifies what is to be done with the result. k is

for kontinuation.
● unit(a).go(k) means k(a)
● (p >= f).go(k) means 

 p.go(b -> f(b).go(k))

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

49

Implementing the Process Monad
● exec(f).go(k) means k(f())	
● pause(t).go(k) means 

								var	timer	=	new	Timer(t)	; 
								timer.run	=	()	->	k(null)	; 
								timer.start()	;	

● E.g. pause(1000).bind(x->print(42)).go(k) 
 ≡ (approx.)  
							var	timer	=	new	Timer(1000)	; 
							timer.run	=	()	->	(x	-> 
																										exec(()-> 
 {trace(42);null})  
)(null).go(k)	; 
							timer.start()	; 
				≡  
							var	timer	=	new	Timer(1000)	; 
							timer.run	=	()	->	k({trace(42);null})	; 
							timer.start()	;

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

50

Loops
Define

 public	static	function	loop<A>(p	:	Process<A>) 
																																									:	Process<Triv>	{  
						return	p	>=	(a	->	loop(p))	;	}	

● [N.B. It looks like an infinite recursion, but it is not! Bind does
not call a	->	loop(p) . It just stores the function in the Process
object that gets returned. The following definition would not
work

 public	static	function	loop<A>(p	:	Process<A>) 
																																									:	Process<Triv>	{  
						return	p	>	loop(p)	;	}	

This is an infinite recursion.]

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

51

Extending the framework
● You can create your own class of guards just by extending

class GuardA<E> while overriding this method
● public	function	enable(k	:	E	->	Void)	:	Disabler	{	…	

● The k represents the thing to do when the event happens.
● The result is simply an object that can disable the guard.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

52

Event values
● The && operator throws away the underlying event data.
● We can also pipe information from the event to a process.
● If e is an Guard<E> and f is a function in E	->	Process<A>,

then  
 e	>>	f 
is a GuardedProcess<A>. For example  
 await(e	>>	unit) 
is a Process<E>.

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

53

Event filtering
● If e is a Guard<E> and g is a function in E	->	Bool, then  

 e	&	g is a Guard<E>	
● e	&	g ignores events where g gives false. For example the

enter(nameBox) guard is constructed as follows
static	function	enter(el	:	Element)	:	Guard<Event>	{ 

 
								function	isEnterKey(ev	:	Event)	:	Bool	{ 
												var	kev	=	cast(ev,	KeyboardEvent)	; 
												return	kev.code	==	“Enter”	;	} 
 
								return	keypress(nameBox)	&	isEnterKey	; 
}

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

54

Implementing await
● Consider
● await(g && p || h && q).go(k)
● Enables, guard g, passing in a continuation that

− Disables both g and h and then
− calls p.go(k)

● Also enables guard h, passing in a continuation that
− Disables both g and h and then
− calls q.go(k)

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201
http://sourcephile.blogspot.com/2015/05/

55

Exception Handling
● What if there is an exception?
● We can set up an exception handler 

 attempt(p, f)  
or attempt(p, f, q)  
where f is a function from exceptions to processes 
and q is a process to be done regardless.

● E.g. openFile >= (h:Handle) ->  
 attempt(doStuffWithIt(h),  
 (ex:Dynamic) -> cope(ex),  
 closeFile(h))

● Implementation: I lied earlier. The go method actually takes
two continuations: One for normal termination and one for
exceptional termination.

