]OJI3U0)

JO uol

1 20C d4SO
pue|punojma) Jo AlisiaAlun [euowsy ‘993 1deg

II9AJON 810p0o8y |

Theodore Norvell

Dept. ECE, Memorial University of Newfoundland
CSER 2021

Control

Do you practice structured programming?

-+ Of course you do.

- We were taught to use structured control constructs such as
- loops
- ifs
+ sequential composition (one damn thing after another)

- Goto statements are bad

- Subroutines are good

- Global state is bad.

But,

do you practice structured programming

when you are handling events?

Events

- An event is anything a program may need to wait for
In a GUI:

user actions such as keypresses, mouse actions,
button clicks, etc.

In distributed or system:

incoming requests and responses from clients, servers,
and peers.

In a concurrent program
- changes of state

messages on internal channels

Example: A use case

A Use case tells a story.

Use case: Greet the user forever
0 The following sequence is repeated forever

0.0 System: Prompts for name
0.1 User: Types in a name and presses “enter”
0.2 System: Greets the user by name

Example: A "console" program

proc main()
loop
print “What is your name?”
var name := readLine

(13t

print “Hello " name “.

The code tells a story. The structure of the story is reflected in
the structure of the code.

Narrative structure

The structure of the console program follows the narrative of the

use case
Use case: Greet the user forever

0 The following sequence is
repeated forever

0.0 System: Prompts for
name

0.1 User: Typesin a
name and presses
“enter”

0.2 System: Greets the
user by name

proc main()
loop
print “What is your
name?”
var name := readLine

(1R H

print “Hello " name “.

But we want a GUI!

NameBox

Theodore Norvell — MUN — Upending Inversion of Control — CSER May 20201 9
http://sourcephile.blogspot.com/2015/05/

The GUI program

var nameBox := new TextField()
var question := new Label(“What is your name”)
var reply := new Label()

proc main() Event handler.

nameBox.on(enter, nameBoxHandler) means mversion
show question of control.
show nameBox

show reply

proc nameBoxHandler()
var name := nameBox.contents()
reply.text := “Hello " name “.”

Where did the control structure go?

Unstructured

Use case: Greet ...

0 The following sequence is
repeated forever

0.0 System: Prompts for
name

0.1 User: Typesin a
name and presses
“enter”

0.2 System: Greets the
user by name

var nameBox := new TextField
var question := new Label(“W
var reply := new Label()

proc main()
nameBox.on(enter, nameBo
show question
show nameBox
show reply

proc nameBoxHandler()
var name := nameBox.conte

(13 H

reply.text := “Hello " name “.

Changing requirements

Use case: Greet the user forever proc main()

loop
print “What is your
name?”
0.0 System: Prompts for var name := readLine

(1L

name print “Hello ” name “.

0 The following sequence is
repeated forever

0.1 User: Types in a
name and presses
“enter”

0.2 System: Greets the
user by name

Changing requirements

Use case: Greet the user forever proc main()

loop
print “What is your
name?”
0.0 System: Prompts for var name := readLine

(1L

name print “Hello ” name “.

0.1 User: Types in a pause 1000 ms
name and presses

“enter”
0.2 System: Greets the
user by name

0.3 Wait 1 second

0 The following sequence is
repeated forever

Changing requirements

var nameBox := new TextField()

var question := new Label(“What is your name”)
var reply := new Label()

var timer := new Timer(1000 ms)

proc main()
nameBox.on(enter, nameBoxHander)
timer.on(done, timeHander)

show question ; show nameBox ; show reply

proc nameBoxHandler()
var name := nameBox.contents

reply.text := “Hello " name “.
hide question ; hide nameBox ; start timer

proc timeHandler()
stop timer ; show question ; clear nameBox ; show nameBox

State machines

Inversion of control programs are state machines
Unstructured programming all over again

— But worse

- Where are the states?

- Our program has two states
- Where are they in the code?

Inv. of control = State machine

var nameBox := new TextField()

var question := new Label(“What's your name”)
var reply := new Label()

var timer := new Timer()

show question stop timer

show nameBox show question

show reply timer.done / clear nameBox
show nameBox

4 for timer
nameBox.enter / var name ;= nameBox.contents

reply.text ;= “Hello " name “.”
hide question

hide nameBox : start timer

Inv. of control = State machine

NEAR BUG! What if there is an enter event
while the timer is running? (The only reason
this won't happen is that | hide the
nameBox.)

show question stop timer
show nameBox show question
show reply timer.done / clear nameBox

show nameBox

4 for timer
nameBox.enter / var name := nameBox.contents

reply.text := “Hello " name “.”
hide question

hide nameBox : start timer

What | would like

var nameBox := new TextField()
var question := new Label(“What's your name”)
var reply := new Label()

proc main()

show reply proc getAndDisplayAnswer

wait for enter on nameBox
var name = nameBox.contents
reply.text ;= “Hello " name “.”

loop
clear nameBox
show nameBox
show question

getAndDisplayAnswer
hide question
hide nameBox

pause 1000 ms

What | would like

var nameBox := new TextField()
var question := new Label(“What's your name”)
var reply := new Label()

proc main()

show reply proc getAndDisplayAnswer

w wait for enter on nameBox
loop

var name := nameBox.contents

clear nameBox reply.text := “Hello ” name “.”

show nameBox
show question

getAndDisplayAnswer
hide question
hide nameBox

pause 1000 ms @

The Problem

How can we write event-driven code in a
structured fashion?

The iIdea

Make a library based on process algebra

Process algebras

- extend context-free grammars with

iInteractivity
+ concurrency
+ communication

iInternal and external choice
Examples: CSP, CCP, mr-calculus, ACP

Take Back Control*

Take Back Control (TBC)
- Alibrary for

- Asynchronous 1/O

- Cooperative multithreading

- Event-driven programming in general
- Written in the Haxe language

Haxe transpiles to JavaScript, Python, and other
languages

- Abstracts away from inversion of control

* | had this name before the Brexit "Leave" campaign.

Example

This is code written in Haxe using TBC.

static function mainLoop() : Process<Triv> { return
loop (clearText(nameBox) >
show(nameBox) >
show(question) >
getAndDisplayAnswer() >
hide(question) >
hide(nameBox) >
pause(1000)) ; }

static function getAndDisplayAnswer()

: Process<Triv> { return
await(enter(nameBox) && getValue(nameBox))
>= hello ; }

static function main() {
... Ccreate the GUI ...
mainLoop().run() ; }

Processes

A generic type
Process<A>

Each object of type Process<A>

* IS immutable

* represents a specification of behaviour

* has a result type A

Processes

When p is a Process<A>
e p.run() starts running the process & returns immediately
e p.go(f, g) similar with continuations
« £(a) if the run succeeds and
e« g(e) ifit fails

static function main() {
create the GUI

mainLoop().run() ; }
Build the view
Build a controller Run the controller

process object

Making Process Objects

Some ways to make process objects
e pause(t)
* when run, it waits t milliseconds
* the result is null

e exec(f) isaProcess<A>
* when run, it calls closure f : () -> A

 the result is the value of f()

Making Process Objects

Some ways to make process objects
e pause(t)
* when run, it waits t milliseconds

* the result is null

eexec(f) isaProcess<A>
e whenrun, itcallsclosure f : () -> A

e the result is the value of ()

Using exec

static function clearText(el : InputElement)
: Process<Triv> {

return exec(() -> {el.value = ""; null;}) ; }

Using exec

static function clearText(el : InputElement)

: Process<Triv> {

return exec(()55 {ELVATUE = I ALY) 5)

% {elivalue = 775 s} is a Haxe lambda expression

Using exec

static function clearText(el : InputElement)
: Process<Triv> {

return exec(() -> {el.value = ""; null;}) ; }

() -> {el.value = ""; null;} Is a Haxe lambda expression

show, hide, getText and putText are similar

Process combinators

Some ways to combine process objects
°p > (
e run p and then run q.

ep >=F
* run p to get aresult a

* then run the result of f(a)

* loop(p) run p over and over forever

Process combinators

Some ways to combine process objects
*p>q

* run p and then run q.

op >=f
e run p to get a result a

e then run the result of f(a)

* loop(p) run p over and over forever

Process combinators

Some ways to combine process objects
*p>q

* run p and then run q.

ep >=fF
* run p to get aresult a

* then run the result of f(a)

* loop(p) run p over and over forever

Process combinators

Some ways to combine process objects
*p>q
* run p and then run q.
ep >=fF
* run p to get aresult a

* then run the result of f(a)

* loop(p) run p over and over forever

Monad inspired by parsing combinators

Our example

static function mainLoop() : Process<Triv> {
return

loop(clearText(nameBox) >
show(nameBox) >
show(question) >
getAndDisplayAnswer() >
hide(question) >
hide(nameBox) >
pause(1000)

)

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

enter(nameBox)
makes a Guard<js.html.Event> object representing events
getValue(nameBox)

makes a Process<String>
enter(nameBox) && getValue(nameBox)

makes a GuardedProcess<String> object
await(...)

makes a Process from the GuardedProcess.
await(...) >= hello

makes a Process that, when run, will update the reply label.

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

. enter(nameBox)

- makes a Guard<js.html.Event> object representing events
getValue(nameBox)
makes a Process<String>
enter(nameBox) && getValue(nameBox)
makes a GuardedProcess<String> object
await(...)
makes a Process from the GuardedProcess.
await(...) >= hello

makes a Process that, when run, will update the reply label.

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

enter(nameBox)
makes a Guard<js.html.Event> object representing events

getValue(nameBox)

- makes a Process<String>
enter(nameBox) && getValue(nameBox)
makes a GuardedProcess<String> object
await(...)
makes a Process from the GuardedProcess.
await(...) >= hello

makes a Process that, when run, will update the reply label.

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

enter(nameBox)

makes a Guard<js.html.Event> object representing events
getValue(nameBox)

makes a Process<String>

enter(nameBox) && getValue(nameBox)

- makes a GuardedProcess<String> object
await(...)
makes a Process from the GuardedProcess.
await(...) >= hello

makes a Process that, when run, will update the reply label.

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

enter(nameBox)
makes a Guard<js.html.Event> object representing events

getValue(nameBox)

makes a Process<String>

enter(nameBox) && getValue(nameBox)

makes a GuardedProcess<String> object
await(...)

- makes a Process from the GuardedProcess.
await(...) >= hello

makes a Process that, when run, will update the reply label.

Guards represent events

static function getAndDisplayAnswer() : Process<Triv> { return
await(enter(nameBox) && getValue(nameBox)) >= hello ; }

static function hello(name : String) : Process<Triv> { return

putText(reply, "Hello "+name) ; }

enter(nameBox)
makes a Guard<js.html.Event> object representing events
getValue(nameBox)

makes a Process<String>

enter(nameBox) && getValue(nameBox)
makes a GuardedProcess<String> object
await(...)
makes a Process from the GuardedProcess.

await(...) >= hello

- makes a Process that, when run, will update the reply label.

Event-driven choice

- Given two guarded processes gpo and gp1,
gpo || gpl is also a guarded process

- The first event to happen wins.

- Combining use cases
loop (await(saveUseCase
|| loadUseCase
|| addItemUseCase

|| deleteItemUseCase)

Things | don't have time to show

Filtering events

+ Or-ing events

- Parallel composition par(p, g) isa Process object.
- The two processes are run on the same thread!

- Exception handling

- Loops with exits

- Communication channels — being developed

Similar things

*+ promises
- provide some structure v/
- not immutable (Promise is not a monad!) X

- handle choice poorly X

- async / await - actors
. do not handle choice X -+ executions as objects Xv/

- part of the language Xv/ - only parallel composition X
- clojure.core.async process algebras

- similar - same idea v/

- relies on macros X -+ implementations? X

Conclusion

- TBC an extensible, embedded, domain-specific library

supporting
- Composition: sequential, parallel, choice, looping
- Abstraction via subroutines and parameters
- Recursion

- We can write code that

IS structured and subroutineable
+ corresponds to use cases
is easy to understand, modify, and maintain.

Thank you

Read more at
http://sourcephile.blogspot.com/2015/05/

Extending the framework

- You can easily extend the framework by creating your own
classes that implement the Process interface.

- You just extend class ProcessA<A> while overriding method
public function go(k : A -> Void) { .. }

Implementing the Process Monad

- Each process p : Process<A> has a method
p.go(k : A -> void)

- The go method initiates the process.

- Its argument specifies what is to be done with the result. k is
for kontinuation.

unit(a).go(k) means k(a)

(p >= f).go(k) means
p.go(b -> f(b).go(k))

Implementing the Process Monad
- exec(f).go(k) means k(f())
- pause(t).go(k) means

var timer = new Timer(t)

timer.run = () -> k(null)’;
timer.start() ;

- E.g. pause(1000).bind(x->print(42)).go(k)

= (approx.)

var timer = new Timer(1000) ;
timer.run = () -> (x ->
exec()->
{trace(42);null})
)(null).go(k) ;

timer.start() ;

var timer new Timer(1000) ;
timer.run = () -> k({trace(42);null}) ;
timer.start() ;

Loops

Define

public static function loop<A>(p : Process<A>)
: Process<Triv> {

return p >= (a -> loop(p)) ; }

[N.B. It looks like an infinite recursion, but it is not! Bind does
not call a -> loop(p) . It just stores the function in the process

object that gets returned. The following definition would not
work

public static function loop<A>(p : Process<A>)
: Process<Triv> {

return p > loop(p) ; }

This is an infinite recursion.]

Extending the framework

- You can create your own class of guards just by extending
class GuardA<E> while overriding this method

public function enable(k : E -> Void) : Disabler { ..

- The k represents the thing to do when the event happens.

- The result is simply an object that can disable the guard.

Event values

- The && operator throws away the underlying event data.

- We can also pipe information from the event to a process.

- If e isan Guard<e> and f is afunctionin E -> Process<A>,
then

e >> f
IS a GuardedProcess<A>. For example
await(e >> unit)
IS @ Process<E>.

Event filtering

- If e iIsacGuard<e> and g is afunctionin E -> Bool, then
e & g IS A Guard<E>

e & gignores events where g gives false. For example the
enter(nameBox) guard is constructed as follows

static function enter(el : Element) : Guard<Event> {
function isEnterKey(ev : Event) : Bool {
var kev = cast(ev, KeyboardEvent) ;
return kev.code == “Enter” ; }

return keypress(nameBox) & isEnterKey ;

Implementing await

- Consider

await(g && p || h & q).go(k)

- Enables, guard g, passing in a continuation that

- Disables both g and h and then
- callsp.go(k)

- Also enables guard h, passing in a continuation that

- Disables both g and h and then
- callsqg.go(k)

Exception Handling

- What if there is an exception?

- We can set up an exception handler

attempt(p, T)
or attempt(p, f, q)
where f is a function from exceptions to processes
and q is a process to be done regardless.

E.g. openFile >= (h:Handle) ->
attempt(doStuffwithit(h),
(ex:Dynamic) -> cope(ex),
closeFile(h))

Implementation: | lied earlier. The go method actually takes
two continuations: One for normal termination and one for
exceptional termination.

