
SMALL� A PROGRAMMING LANGUAGE FOR STATE MACHINE DESIGN

Theodore S� Norvell

Faculty of Engineering
Memorial University of Newfoundland
St� John�s� NF� A�B �X�� Canada

theo�engr�mun�ca http	

www�mun�engr�ca
�theo


ABSTRACT

A small and simple language for sequential design is
introduced�

�� INTRODUCTION

Synchronous state�machine design is often expressed
using graphical notations such as Algorithmic State
Machine �ASM� charts ��� and state transition dia�
grams� An alternative is to use common hardware de�
scription languages such as VHDL �	� or Verilog �
��

For both teaching and design purposes� neither ap�
proach is satisfactory� ASM charts and similar nota�
tions invite unstructured designs and allow parallelism
only at the outermost level� Educational implemen�
tations appear not to exist� VHDL and Verilog are
geared toward asynchronous behaviour � in express�
ing synchronous designs the clock signals must be made
explicit� Also they are large� complex languages with
complex semantic foundations�

Small �State Machine Algol�Like Language� is a
small and simple imperative programming language�
designed speci
cally for hardware implementation� It
bears roughly the same relationship to ASM charts as
Algol�like software languages bear to �owcharts�

�� THE SMALL LANGUAGE

���� Signals� registers � primitive commands

Data� in small� is carried either by named signals or
named registers�

Signals are used to carry data between commands
executing concurrently� Data is placed on a signal s by
means of an assert command s�E� The signal s may be
referred to in other expressions and will have the value
of expression E whenever the command s�E is being
executed in the same clock period�

Signals are declared using a command of the form
sig id � T C� where T is a type and C is a command�
C is the scope of the declaration�

Each type T is associated with a default value def �T �
During those clock periods in which there is no assert

of a signal� the signal has its default value� For the bool
type the default value is false�

Registers are used to carry data forward in time�
Data is placed in a register r by means of an assignment
command r � E� The register r may be referred to in
any expression� The value of r is the same as the latest
value assigned to it in a previous clock period�

Registers are declared using a command of the form
reg id � T C� where T is a type and C is the scope of
the register�

���� Composition operators

Any execution of a command takes a certain number of
consecutive clock periods� The duration of �an execu�
tion of� a command is the di�erence between the initial
and the 
nal clock period� For example� in the assert
and assignment commands we have seen� the initial and
the 
nal clock periods are always the same� hence the
duration is ��

The sequential composition C� C� � � � Cn of two
or more commands is executed by executing the com�
mands consecutively from left to right� The 
nal clock
period of Ci is also the initial clock period of Ci���
I call this policy dovetailing� The duration of a se�
quential composition is the sum of the durations of its
constituents

For example� a sequence of asserts and assignments
has a duration of �� For example

a�false b�a c� b

assigns false to c� but so does

c� b b�a a�false �

In either case� all three commands start at the same
time�

In order to keep everything from happening at once
we introduce a command tick that has duration �� but
no other e�ect� For example�

c� true tick a�c

asserts a to have the value true during its second and

nal clock period�



The command skip is similar to tick in having no
e�ect� but has a duration of �� It is the identity of
sequential composition�

The parallel composition parC� k C� k � � � k Cn rap
starts all its subcommands at once� The duration is the
maximum of the durations of the subcommands�

The alternative composition if E thenC� elseC� �
chooses either C� or C� based on the value of E during
the initial clock period� The initial clock period of the
chosen command is the same as the initial clock period
of the whole command� If either C� or C� is skip� it
may be omitted� together with the preceding keyword�

The looping construct is loop id C pool� Within
the loop body C the command restart id acts as a
recursive call to the loop� There are two restrictions
on the use of restart� it must be a tail call� and there
must be at least one tick on every path from the start
of the loop to the restart�

Two abbreviations capture common patterns of loop�
ing and ensure that both restrictions are ful
lled�
whileE doC od abbreviates

loopw if E
thenC tick restartw
�

pool

and repeatC untilE abbreviates

loopu C

if E
else tick restartu
�

pool �

In both cases the implicit delay is inserted immediately
before the return to the top of the loop�

���� Open systems

In order to communicate with the rest of the world
there must be some provision for input and output�
In small this is accomplished via signals and registers
that are declared global When commands having the
same global name are composed� that name must have
the same type and kind �register or signal� in both� Any
global signals and registers of subcommands become
global signals of the larger construct�

���� Types and expressions

The only types currently supported by small are bool
and arrays� array nof T � There are a number of oper�
ations that act on booleans and arrays� including arith�
metic operations that treat arrays of booleans as num�
bers using either unsigned�magnitude or two�s comple�
ment encoding� The assert and assignment commands
have forms to allow assertion of or assignment to array
elements or segments of arrays�

globalsig go � bool
globalsig done � bool
globalsigmultiplier � arrayN of bool
globalsigmultiplicand � arrayN of bool
globalsig product � array ��N of bool
while true
do reg pl � arrayN of bool

reg pu � arrayN of bool
reg a � arrayN of bool
reg b � arrayN of bool
reg count � array dlg �Neof bool
repeat pu � �of �

count � dlg �Neof �
a� multiplicand

b� multiplier

untilgo
tick

repeat sig sum � arrayN � �of bool
if b���
then sum 	 pu uplusa
else sum 	 pu�����
�
pu � sum�N
��
pl � pl�N � �
�����sum����
b� b�N � �
�������
count � count � �

untilcount � �N � �
as dlg �Nebits
tick

done 	 true
product 	 pl �� pu

od

Figure �� A multiplier

��	� Restrictions

Because of parallelism� it is possible to assign to the
same register� or assert the same signal more than once
during a single clock period� This is allowed� but there
is a restriction that all values given to each location in
a single clock period must be the same�

Another restriction requires that assert commands
executed in the same clock period must not be circu�
larly dependent� These examples all violate this rule�

a�a

a�b b�a

a�b b�nota

if a thena�true else a�false �

if a thena�false else a�true � �

�� EXAMPLE

Figure � shows an example program� It demonstrates
some of the varieties of expressions in the language�
Numbers are represented by arrays such that the least�
signi
cant bit is at index �� Array operations include



a	E � �� � � � � a�� � E�� � �a�� � ��b�� � ��q�� � ��r��


q � E � �� � � � �r�����
 � E�� ���a�� ���b�����r�� � �q��


skip � �� � � � � ��a�� � ��b�� � ��r�� � ��q�� 


tick �

�
� � � � � � � ��a�� � ��b�� � ��r�� � ��q��

� ��a�� � � ��b�� � � ��r�� � � ��q�� �

�

sig c � T C � ��c� �c�C����� j � 	 �� 	 �
����c��� �c��� � def �T 



reg p � T C � ��p� �p�C����� j � 	 �� � �
����p��� �p������
 � p���



globalsiga � Ta C � C

globalreg q � Tq C � C

if E thenC elseD� � ��E�� 
 C
 � ��E�� 
 D



C D � ���� �C�
�

�� �D
�

�� 


parC k D rap � ��C wait
�D
 � �C � �Dwait



loop l w��restart l
pool � �uC j C � w�C � Prog�C � C


Figure �� Semantic equations for small

indexing �A�i��� segment formation �A�n�i� is the seg�
ment of A of length n that starts at index i�� catenation
�A��B�� and unsigned addition �AuplusB��

�� FORMAL SEMANTICS

A speci�cation is a predicate on behaviours� Those be�
haviours for which the predicate is true are considered
acceptable to the speci
cation ����

Behaviours for small are described by variables
representing times and time varying functions� We
take xnat � nat � � as a set of times� We de
ne
wire�T � xnat � T� To describe the behaviour of a
command with a global signal a � Ta and global regis�
ter r � Tr� we use the following variables�

� � xnat The starting time�
� � � xnat The 
nal time�
a � wire�Ta The value of a during each clock

period�
�a � wire�bool Whether a is asserted during each

clock period�
r � wire�Tr The value of r during each clock

period�
�r � wire�bool Whether r recieves a new value after

each clock period�

An example speci
cation is

� � � � � � � �a�� � a�� � r�� � �r�� � r��� � �� � �� �

A command that implemented this speci
cation would
have a duration of �� would assert a to have the same
value as r during its 
rst clock period� and would assign
�� to r between its two clock periods�

C �D �

�
B�

� �a� �b� �q� �r� �a��b� �q� �r � C�a��b��q��r

�a��b� �q� �r
�D

�a��b��q��r

�a��b��q��r

� �a � ��a 	 �a� � �b � ��b 	 �b�
� �q � � �q 	 �q� � �r � � �r 	 �r�

�
CA

wait � �� � 
 ������ j � 	 �� 	 �
� ���a������b������r������q���



Prog�C � �� � 
 � v C


�C v D
 � ���� � �

� a� �a� b��b� q� �q� r� �r �C � D


Figure 	� Auxilliary notations

The formal semantics is given by equating primitive
commands to speci
cations and by equating compo�
sition operators �parallel� sequential� alternative� and
looping� to operators on speci
cations� The equations
for these de
nitions are given in Figures � and 	� For
simplicity� in these equations we assume there are two
global signals a and b� and two global registers q and r�
Assignment to and signalling of array elements and seg�
ments is not dealt with� The operator C �D denotes
the combining of two components in such a way that
both control their common set of signals and registers�

The looping operator requires some explanation�
The relation C v D denotes re
nement� a speci
ca�
tion C is re
ned by a speci
cation D i� every behavior
accepted by D is also accepted by C� This partial order
gives rise to a complete lattice of speci
cations in which
u is the join� The predicate Prog�C means that C en�
sures that the 
nal time is no less than the initial time�
If we regard a loop�s body as a function� w� from spec�
i
cations to speci
cations� the loop is the least�re
ned
progressive 
xed�point of this function ��� ���

	� SPECIFICATIONS

By extending the language with a few constructs in�
tended for speci
cation purposes� we obtain an expres�
sive language of which small programs form a subset�
For example� de
ning hEi to mean � � � � � E�� and
�E to mean � � 
 � � ���� j � � �� � � � �E��� �� we obtain
a form of interval temporal logic ���� A multiplier with
a simple handshake interface can be speci
ed as�

S � global sig go � bool � � �
while true
do � �A�B�

�
go
hgo �multiplier � A �multplicand � Bi
tick

�
done
hdone � product � A�Bi �

od



A small program P implements this speci
cation i�
S v P � Because the various program composition op�
erators are monotone with respect to re
nement� the
derivation of programs from speci
cations can proceed
in a step�wise fashion�


� IMPLEMENTATION

The current implementation of the small language
translates source programs to an extended form of ASM
chart� The ASM chart can then either be simulated or
translated to a gate level implementation�


��� Translation to ASM charts

Small programs can be translated quite directly to an
extended form of ASM charts� Each tick command is
translated to an empty state node �a rectangle�� As�
signment and assert commands are translated to ordi�
nary nodes �ovals�� Alternative compositions give rise
to decision nodes �diamonds�� The composition opera�
tors control how nodes are connected� An extra state
node is added at the start of the chart to represent the
initial state�

Parallel composition introduces the possibility that
a state node may have more than one successor state
node� This is usually not considered proper in ASM
charts� but causes no di�culty� we simply allow more
than one state node to be active in a single clock period�
Thus sets of state nodes� rather than the state nodes
themselves� represent the states of the 
nite state ma�
chine� Coordinating the termination of parallel processes
is done by introducing an extra signal for each process
that indicates its completion� an extra state node is
added at the end of each process as a wait state�

Simulation consists of interpreting the ASM charts�


��� Translation to gate�level

The translation to gate�level is from the ASM charts�
The state�encoding currently used is a one�hot encod�
ing �i�e� there is one �ip��op per state node�� al�
though� as noted above� more than one state node may
be active at one time� Encoding schemes that use fewer
�ip��ops could be devised� Optimizations such as the
sharing of components among commands that can not
be active in the same cycle are not currently done and
will probably be implemented using source�to�source
translation�

�� CONCLUSIONS

The small language provides a structured approach to
the design of sequential circuits� The language has a
simple semantic basis and can be embedded in a larger
speci
cation language�

The most similar work reported in the literature
is the Handel language designed and implemented by
Page and his group � �� The most striking di�erence
is that� in small� assignment and assertion commands
have a duration of � rather than �� this leads to what
I have called !dovetailing� and allows fast designs to
be expressed more easily� Handel has no equivalent
to assert commands� but does support communication
primitives that include synchronization� Such commu�
nication primitives could be added to small�

Future work is needed� First� there are language
enhancements� The language lacks several useful con�
structs such as modules� macros� and a parallel !for�
construct� Second� the question of deriving implemen�
tations from their speci
cations needs to be addressed�
Small� or a similar language� augmented with spec�
i
cation constructs� provides a good language for ex�
pressing speci
cations� implementations� and interme�
diate steps� The correctness of each re
nement step
should be checkable by a theorem prover�


� ACKNOWLEDGMENTS

This work was supported by the National Sciences and
Engineering Research Council� I would like to thank
Kong Fook Lai for his initial implementation of the
gate�level translation�

�� REFERENCES

��� Eric C� R� Hehner� Predicative programming� Com�
munications of the ACM� 	��	�����"� �� �#$��

��� Ben Moszkowski� Executing Temporal Logic Pro�

grams� Cambridge University Press� �#$
�

�	� Zainalabedin Navabi� VHDL� Analysis and Model�

ing of Digital Systems� McGraw�Hill� �##��

��� Theodore S� Norvell� Machine code programs are
predicates too� In David Till� editor� Sixth Re�ne�

ment Workshop� Workshops in Computing� pages
�$$"	��� Springer Verlag� �##��

��� Theodore S� Norvell� Predicative semantics of loops�
In Richard Bird and Lambert Meertens� editors�
Algorithmic Languages and Calculi� Chapman�Hall�
�##�� Forthcoming�

� � Ian Page� Constructing hardare�software systems
from a single description� Journal of VLSI Signal

Processing� �	����$�"���� �##
�

�
� Donald E� Thomas and Philip R� Moorby� The Ver�
ilog Hardware Description Language� Kluwer� �##��

��� David Winkel and Franklin Prosser� The Art of

Digital Design� Prentice�Hall� �#$��


