SMALL: A PROGRAMMING LANGUAGE FOR STATE MACHINE DESIGN

Theodore S. Norvell

Faculty of Engineering
Memorial University of Newfoundland
St. John’s, NF, A1B 3X5, Canada
theo@engr.mun.ca http://www.mun.engr.ca/~theo/

ABSTRACT

A small and simple language for sequential design is
introduced.

0. INTRODUCTION

Synchronous state-machine design is often expressed
using graphical notations such as Algorithmic State
Machine (ASM) charts [7] and state transition dia-
grams. An alternative is to use common hardware de-
scription languages such as VHDL [2] or Verilog [6].

For both teaching and design purposes, neither ap-
proach is satisfactory. ASM charts and similar nota-
tions invite unstructured designs and allow parallelism
ouly at the outermost level. Educational implemen-
tations appear not to exist. VHDL and Verilog are
geared toward asynchronous behaviour — in express-
ing synchronous designs the clock signals must be made
explicit. Also they are large, complex languages with
complex semantic foundations.

SMALL (State Machine Algol-Like Language) is a
small and simple imperative programming language,
designed specifically for hardware implementation. It
bears roughly the same relationship to ASM charts as
Algol-like software languages bear to flowcharts.

1. THE SMALL LANGUAGE

1.0. Signals, registers & primitive commands

Data, in SMALL, is carried either by named signals or
named registers.

Signals are used to carry data between commands
executing coucurrently. Data is placed on a signal s by
means of an assert command s'E. The signal s may be
referred to in other expressions and will have the value
of expression E whenever the command s!E is being
executed in the same clock period.

Signals are declared using a command of the form
sigid : T C, where T is a type and C is a command.
C' is the scope of the declaration.

Each type T is associated with a default value def. T
During those clock periods in which there is no assert

of a signal, the signal has its default value. For the bool
type the default value is false.

Registers are used to carry data forward in time.
Data is placed in a register by means of an assignment
command r < E. The register r may be referred to in
any expression. The value of 7 is the same as the latest
value assigned to it in a previous clock period.

Registers are declared using a command of the form
regid : T C', where T is a type and C' is the scope of
the register.

1.1. Composition operators

Any execution of a command takes a certain number of
consecutive clock periods. The duration of (an execu-
tion of) a command is the difference between the initial
and the final clock period. For example, in the assert
and assignment commands we have seen, the initial and
the final clock periods are always the same, hence the
duration is 0.

The sequential composition Cy Cy C,, of two
or more commands is executed by executing the com-
mands consecutively from left to right. The final clock
period of C; is also the initial clock period of Cjyi.
I call this policy dowvetailing. The duration of a se-
quential composition is the sum of the durations of its
constituents

For example, a sequence of asserts and assignments
has a duration of 0. For example

alfalse bla ¢+ b
assigns false to ¢, but so does
c+b bla alfalse
In either case, all three commands start at the same
time.
In order to keep everything from happening at once

we introduce a command #ick that has duration 1, but
no other effect. For example,

¢+ true tick alc

asserts a to have the value true during its second and
final clock period.

The command skip is similar to tick in having no
effect, but has a duration of 0. It is the identity of
sequential composition.

The parallel compositionpar Cy || Cy || --- || C, rap
starts all its subcommands at once. The duration is the
maximum of the durations of the subcommands.

The alternative composition if E then Cj else C fi
chooses either Cy or (7 based on the value of E during
the initial clock period. The initial clock period of the
chosen command is the same as the initial clock period
of the whole command. If either Cy or C; is skip, it
may be omitted, together with the preceding keyword.

The looping construct is loopid C pool. Within
the loop body C' the command restartid acts as a
recursive call to the loop. There are two restrictions
on the use of restart: it must be a tail call, and there
must be at least one tick on every path from the start
of the loop to the restart.

Two abbreviations capture comimon patterns of loop-
ing and ensure that both restrictions are fulfilled:
while F do C od abbreviates

loopw ifFE
then C tick restart w
fi

pool

and repeat C' until ¥ abbreviates

loopu C
if i
else tick restartu
fi

pool

In both cases the implicit delay is inserted immediately
before the return to the top of the loop.

1.2. Open systems

In order to communicate with the rest of the world
there must be some provision for input and output.
In sMALL this is accomplished via signals and registers
that are declared global When commands having the
same global name are composed, that name must have
the same type and kind (register or signal) in both. Any
global signals and registers of subcommands become
global signals of the larger construct.

1.3. Types and expressions

The only types currently supported by SMALL are bool
and arrays: array nof T'. There are a number of oper-
ations that act on booleans and arrays, including arith-
metic operations that treat arrays of booleans as nun-
bers using either unsigned-magnitude or two’s comple-
ment encoding. The assert and assignment commands
have forms to allow assertion of or assignment to array
elements or segments of arrays.

globalsig go : bool
globalsig done : bool
globalsig multiplier : array N of bool
globalsig multiplicand : array N of bool
globalsig product : array 2 x N of bool
while true
do reg pl: array N of bool
reg pu : array N of bool
rega : array N of bool
regb : array N of bool
reg count : array [lg.N] of bool
repeat pu — 40f0
count — [lg.N]of 0
a «— multiplicand
b — multiplier
until go
tick
repeat sigsum : array N + 1 of bool
if 5[0]
then sum ! puuplusa
else sum | pu ++[0]
fi
pu — sum[N@Q1]
pl — pl[N — 1Q1] ++[sum[0]]
b — B[N — 1@Q1]4+[0]
count «— count +1
until count = (N — 1) as [lg. N bits
tick
done ! true
product ! pl ++ pu
od

Figure 0: A multiplier

1.4. Restrictions

Because of parallelism, it is possible to assign to the
same register, or assert the same signal more than once
during a single clock period. This is allowed, but there
is a restriction that all values given to each location in
a single clock period must be the same.

Another restriction requires that assert commands
executed in the same clock period must not be circu-
larly dependent. These examples all violate this rule:

ala

alb bla

alb blnota

if o then a!true else a!fulse fi
if o then a!fulse else a!truefi

2. EXAMPLE

Figure 0 shows an example program. It demonstrates
some of the varieties of expressions in the language.
Numbers are represented by arrays such that the least-
significant bit is at index 0. Array operations include

IE=(r'"=1Aar=ETA@TA—bTAGTA-TT)

g —E=("=1Ar(r+1) = E-rA—=@.TA=b.TA-F.TAGT)
skip = (r' =7 A=d@.T A=b.r A=F.T A=GT)
tick — =714+ 1A=aT A=bT AT ASGT
A\ A —arA=bT AT AT

sige: T C =
regp: 1T C=

(Fe,e-CA(NV? | T < 7 < TA=EFc.7 = def. T))

globalsiga : 7T, C =C
globalreggq: 7, C =C
if FthenCelse Dfi = (E.r = C) A (mE.7 = D))
CD=(3%.CI ADI)
par C || Drap = ((Cwait) A D)V (C A (D wait))
loop! w.(restart!) pool = (MC | C = w.C' A Prog.C - C)

Figure 1: Semantic equations for small

indexing (A[4]), segment formation (A[nQi] is the seg-
ment of A of length n that starts at index ¢), catenation
(A ++ B), and unsigned addition (A uplus B).

3. FORMAL SEMANTICS

A specification is a predicate on behaviours. Those be-
haviours for which the predicate is true are considered
acceptable to the specification [0].

Behaviours for sSMALL are described by variables
representing times and time varying functions. We
take xnat = nat U oo as a set of times. We define
wire. T = xnat — T. To describe the behaviour of a
command with a global signal « : T, and global regis-
ter v : T,.. we use the following variables:

T : xnat The starting time.

7' : xnat The final time.

a :wireT, The wvalue of a during each clock
period.

Whether a is asserted during each
clock period.

a : wire.bool

7 wire) The wvalue of » during each clock
period.
7 1 wire.bool Whether 7 recieves a new value after

cach clock period.

An example specification is
r=r+1AaTAaT=rTATTAT(T+1)=10.
A command that implemented this specification would
have a duration of 1. would assert a to have the same

value as r during its first clock period, and would assign
10 to r between its two clock periods.

(3p, p-CAY? | 7 £ 7 < 7' A=p7p.(741) = p.7))

CAD= /\a—(a\/a)/\E b\/b)
ANG=(qV G AT =(VF)
wait = (7' > 7 A(VF | 7 <7 < 7@ FADF AT ASET))

Figure 2: Auxilliary notations

The formal semantics is given by equating primitive
commands to specifications and by equating compo-
sition operators (parallel. sequential, alternative, and
looping) to operators on specifications. The equations
for these definitions are given in Figures 1 and 2. For
simplicity, in these equations we assume there are two
global signals a and b, and two global registers ¢ and r.
Assignment to and signalling of array elements and seg-
ments is not dealt with. The operator C' A D denotes
the combining of two components in such a way that
both control their common set of signals and registers.

The looping operator requires some explanation.
The relation C C D denotes refinement; a specifica-
tion C'is refined by a specification D iff every behavior
accepted by D is also accepted by C. This partial order
gives rise to a complete lattice of specifications in which
M is the join. The predicate Prog.C means that C en-
sures that the final time is no less than the initial time.
If we regard a loop’s body as a function, w, from spec-
ifications to specifications, the loop is the least-refined
progressive fixed-point of this function [3, 4].

4. SPECIFICATIONS

By extending the language with a few constructs in-
tended for specification purposes, we obtain an expres-
sive language of which SMALL programs form a subset.
For example, defining (F) to mean 7/ = 7 A E.7 and
OF tomean 7/ > 7 A (V7| 7 <7 < 7' E.7), we obtain
a form of interval temporal logic [1]. A multiplier with
a simple handshake interface can be specified as:

S = globalsig go : bool - -
while true

do (3A, B-
0-go
(go N multiplier = A A multplicand = B)
tick
O-done

(done A product = A x B))
od

A SMALL program P implements this specification iff
S C P. Because the various program composition op-
crators are monotone with respect to refinement, the
derivation of programs from specifications can proceed
in a step-wise fashion.

5. IMPLEMENTATION

The current implementation of the SMALL language
translates source programs to an extended form of ASM
chart. The ASM chart can then either be simulated or
translated to a gate level implementation.

5.0. Translation to ASM charts

SMALL programs can be translated quite directly to an
extended form of ASM charts. Each tick command is
translated to an empty state node (a rectangle). As-
signment and assert commands are translated to ordi-
nary nodes (ovals). Alternative compositions give rise
to decision nodes (diamonds). The composition opera-
tors control how nodes are connected. An extra state
node is added at the start of the chart to represent the
initial state.

Parallel composition introduces the possibility that
a state node may have more than one successor state
node. This is usually not considered proper in ASM
charts, but causes no difficulty; we simply allow more
than one state node to be active in a single clock period.
Thus sets of state nodes, rather than the state nodes
themselves, represent the states of the finite state ma-
chine. Coordinating the termination of parallel processes
is done by introducing an extra signal for each process
that indicates its completion; an extra state node is
added at the end of each process as a wait state.

Simulation consists of interpreting the ASM charts.

5.1. Translation to gate-level

The translation to gate-level is from the ASM charts.
The state-encoding currently used is a one-hot encod-
ing —i.e. there is one flip-flop per state node—, al-
though, as noted above, more than one state node may
be active at one time. Encoding schemes that use fewer
flip-flops could be devised. Optimizations such as the
sharing of components among commands that can not
be active in the same cycle are not currently done and
will probably be implemented using source-to-source
translation.

6. CONCLUSIONS

The SMALL language provides a structured approach to
the design of sequential circuits. The language has a
simple semantic basis and can be embedded in a larger
specification language.

The most similar work reported in the literature
is the Handel language designed and implemented by
Page and his group [5]. The most striking difference
is that, in SMALL, assignment and assertion commands
have a duration of 0 rather than 1; this leads to what
I have called ‘dovetailing’ and allows fast designs to
be expressed more easily. Handel has no equivalent
to assert commands, but does support communication
primitives that include synchronization. Such commu-
nication primitives could be added to SMALL.

Future work is needed. First, there are language
enhancements. The language lacks several useful con-
structs such as modules, macros, and a parallel “for’
construct. Second, the question of deriving implemen-
tations from their specifications needs to be addressed.
SMALL, or a similar language, augmented with spec-
ification constructs, provides a good language for ex-
pressing specifications, implementations, and interme-
diate steps. The correctness of each refinement step
should be checkable by a theorem prover.

7. ACKNOWLEDGMENTS

This work was supported by the National Sciences and
Engineering Research Council. I would like to thank
Kong Fook Lai for his initial implementation of the
gate-level translation.

8. REFERENCES

[0] Eric C. R. Hehner. Predicative programming. Cormn-
munications of the ACM, 27(2):134-151, 1984.

[1] Ben Moszkowski. Ezecuting Temporal Logic Pro-
grams. Cambridge University Press, 1986.

[2] Zainalabedin Navabi. VHDL: Analysis and Model-
wmg of Digital Systems. McGraw-Hill, 1993.

[3] Theodore S. Norvell. Machine code programs are
predicates too. In David Till, editor, Sizth Refine-
ment Workshop, Workshops in Computing, pages
188-204. Springer Verlag, 1994.

[4] Theodore S. Norvell. Predicative semantics of loops.
In Richard Bird and Lambert Meertens, editors,
Algorithmic Languages and Calculi. Chapman-Hall,
1997. Forthcoming.

[5] Tan Page. Constructing hardare-software systems
from a single description. Journal of VLSI Signal
Processing, 12(1):87-107, 1996.

[6] Donald E. Thomas and Philip R. Moorby. The Ver-
tlog Hardware Description Language. Kluwer, 1991.

[7] David Winkel and Franklin Prosser.
Digital Design. Prentice-Hall, 1980.

The Art of

