
Logical Speci�cations for Functional Programs�

Theodore S� Norvell and Eric C�R� Hehner
norvell�cs�utoronto�ca hehner�cs�utoronto�ca

Department of Computer Science
University of Toronto

Abstract� We present a formal method of functional program develop�
ment based on step�by�step transformation�

In their most abstract form� speci�cations are essentially predicates that
relate the result of the speci�ed program to the free variables of that pro�
gram� In their most concrete form� speci�cations are simply programs in
a functional programming language� Development from abstract speci��
cations to programs is calculational�

Using logic in the speci�cation language has many advantages� Impor�
tantly it allows nondeterministic speci�cations to be given� and thus does
not force overspeci�cation�

� Introduction

A great deal of research has focused on transforming functional programs into
equivalent functional programs� The original program can be considered to be
an executable speci�cation�

In this paper we wish to consider not only executable speci�cations� but also
implicit speci�cations that relate the input and result of a functional program
in ways that give no indication of any practical way to compute the result� Such
a speci�cation can be more abstract and more declarative than an executable
speci�cation�

We take the following point of view� applicable to programming in imper�
ative� functional� or any other kind of language� Speci�cations describe those
observations that are acceptable and programs are one sort of speci�cation�
A speci�cation x can be re�ned to another speci�cation y if and only if x de�
scribes every observation y describes� Within such a framework� nondeterminism
presents no di�culty and the validity of re�nement is a very simple relationship�
In the case of functional 	expression
 programming each observation consists
of the state in which an expression is evaluated and and a value for the whole
expression�

To describe acceptable observations� various notations can be used� Common
notations include predicate calculus and set notation� Neither of these is satis�
factory for expressions� as they disagree with existing notation for deterministic

� Published in LNCS ���� Bird� Morgan� and Woodcock editors� pp� ��	��� Springer�
Verlag�
����

� Logical Speci�cations for Functional Programs

expressions� Instead we use a calculus of nondeterministic expressions known as
bunch theory� Implicit speci�cations written in predicate calculus �t well into
this calculus�

��� The Structure of the Paper

The structure of this paper is as follows� Section � presents a theory of nonde�
terministic expressions that is used throughout the rest of the paper� Section �
introduces a functional programming language and a speci�cation language� The
programming language will be a subset of the speci�cation language� Examples
of using this speci�cation language are given in Sect� � In Sect� � the relation
of re�nement is introduced� A speci�cation y re�nes a speci�cation x 	written
x w y
 i� every way that y can be satis�ed also satis�es x� A program is a
speci�cation that can be executed with acceptable e�ciency and so needs no
further re�nement� Section � presents a number of theorems that are of help in
proving the re�nement relation� Section � shows how these theorems can be used
to derive programs from speci�cations by a number of small and formally jus�
ti�ed steps� Higher order functions are discussed in Sect� �� Section � presents
a method of specifying time bounds� In Sect� � we look at pattern matching�
Finally Sect� �� discusses related research�

� Nondeterministic Expressions

We generalize the notion of expression to allow �don�t care� nondeterminism
	also known as �erratic� nondeterminism
�Our generalized expressions are known
as bunch expressions 	Hehner ����
�

Given expressions x and y� the expression x�y called the bunch union of x
and y denotes a value that could be the value of x or could be the value of y�
Bunch union is associative� commutative� and idempotent� Ordinary operators
distribute over bunch union� For example� the following three expressions are
equivalent

	�� �
 � 	�� �

	� � �
� 	� � �
� 	� � �
� 	� � �

� �� �

The identity of bunch union is written as null� It represents the empty bunch�
At the opposite end of the spectrum is all� representing the union of all expres�
sions�

A bunch x is a subbunch of a bunch y if and only if there is a bunch z such
that x�z is equivalent to y� We write x � y� This is a partial order� For all bunch
expressions x� we have null � x� Equality of bunch expressions will be written as
x � y� meaning x �y and y �x� Ordinary equality is written x�y and di�ers from
x � y in that it distributes over bunch union� Thus

	�� �
 � � � true� false

Mathematics of Program Construction ��� LNCS ���� �

whereas
�� � �� �

Certain bunch expressions will be called elements� Each number is an element
as are the constants true and false� A list of elements is an element� Which
functional values are elements will be discussed later� We say e is an element of
x if e � x and e is an element�

Bunches may be considered as sets but without the nesting 	sets of sets
�
using a simpler notation 	no curly braces
� and with distribution of operations
over the elements� The main reasons for using bunches rather than sets are
notational convenience� and that they specialize properly to deterministic values�
whereas sets do not�

� The Speci�cation Language

Our speci�cation language will be an extension to a simple functional program�
ming language� The expressions of the speci�cation language are bunch expres�
sions�

Speci�cations may contain free variables� These represent the input to the
expression� i�e� the state in which it is evaluated� Each variable represents an
element�

As a simple example of a speci�cation� n�� is the speci�cation of a number
one greater than state variable n� It happens that this speci�cation is also a
program� By using bunch expressions� we allow for choice in the speci�cation� A
speci�cation of a number that is one� two� or three greater than n is n�	�� ��
�

��� The Programming Language Subset

For this paper� we will use the simple language illustrated in Fig� �� Expressions
in this language will be called programs to distinguish them from more general
speci�cations�

Types The types of this language are bunches� The bunch bool has elements
true and false� The bunch nat has elements �� �� �� and so on� A subrange of
the naturals is written i��� j for naturals i and j� This subrange includes i but
excludes j� Given a type T � the type T � is the bunch of all �nite lists with items
	list members
 in T � An elementary list is one whose items are all elements�

Expressions The usual boolean and numerical operators are provided� as well
as a standard if�expression�

Lists are written in square brackets with semicolons separating the items�
A useful notation forms a list of contiguous naturals� �i��� j� begins with i and
continues up to 	but not including
 j� Lists may be catenated using �� List
indexing is written as juxtaposition and lists are indexed from �� A list may be
indexed by a list� producing a list of results�

� Logical Speci�cations for Functional Programs

Types

Naturals nat ��
� �� � � �
Subranges ����
� ��
��

Booleans bool true� false

Lists nat� � �� ���� ��� ��� � � �

Expressions

Numerical Expressions
 � � �
Boolean Expressions
 � � false

Conditionals if
 � � then � else � �
Lists �
� �� �� �� �
� �� �� ��
Lists �����
�� ���
��

�
List catenation �
� �� � ��� �� �
� �� �� ��
List indexing �
� �� �� �� � �
List indexing �
� �� �� �� ��� ��
� �� ��� �� ��
�
List length ��
� �� �� �� �
Functions �m � nat� � �i � nat � m ����� i�
Application ��m � nat� � �i � nat � m ����� i�� �
� �� �� �� � �
���
Let let i� � � �
� �� �� �� ����� i� �
� �� ��

Fig� �� A simple functional programming language

Functions and let�expressions introduce new identi�ers which may be used
within their bodies� Function application is written as juxtaposition�

Notably absent from this language is any form of recursive de�nition� Recur�
sion is treated in section ����

Semantics The formal semantics of the operators of the programming language
can be given axiomatically� A listing of all the axioms would be rather long� We
list a few as examples�

if true then x else y � x

if false then x else y � y

�� � � �

��x� � �

�	x � y
 � �x��y

���

The treatment of errors 	for example division by �
 is a matter of some choice�
We can treat errors as equivalent to all� or we can omit axioms that allow us to
reason about erroneous computations� Either way of treating errors is consistent
with the rest of this paper�

��� Speci�cation Language Extensions

The programming language presented so far can be used to write executable
speci�cations which can then be transformed to more e�cient programs using

Mathematics of Program Construction ��� LNCS ���� �

conventional techniques�
Instead of stopping at an executable speci�cation language� we will allow

any bunch expression to be used as a speci�cation� In this section� we present a
number of constructs that are of use in writing speci�cations� They extend the
programming language to allow greater ease and range of expression�

In this section� P and Q will stand for �rst order predicates� e for an element�
x� y� and z for speci�cations� and i for an identi�er�

Until Sect� � we will only consider elements that are �rst order� that is num�
bers� booleans� and lists of �rst order elements� Functional elements will be
discussed in Sect� ��

Predicates are boolean expressions� However the nondeterminism of the spec�
i�cation language is not extended to the predicates� For example i� 	��
 is not
an acceptable predicate because� in any state where i � � it is equivalent to
	true� false
� In each state� a predicate must be either true or false� never both�
never neither 	though the logic may not be complete enough to say which
�

Programs Any program is also a speci�cation� Furthermore� any way of con�
structing programs from programs can be used to construct speci�cations from
speci�cations� Thus

�x� y�

and
if P then x else y

are both speci�cations provided that P is a predicate and x and y are speci�ca�
tions� even though P � x� and y may not be programs�

Solutions The expression xi � P is equivalent to the bunch of all elements i for
which P is true� For example� xi � i � nat � i � is the bunch �� �� �� The axiom
for this quanti�er is�

	e � xi � P
 � 	Substitute e for i everywhere in P

with the usual caveats for substitution�

Null The speci�cation null re�nes all speci�cations� This speci�cation is not
satis�ed by any result� The axiom for null is

null � xi � false

In imperative programming� the corresponding speci�cation is that which has�
as its weakest precondition predicate transformer� �R � true�

All The speci�cation all is re�ned by all speci�cations� It can be used by the
speci�er to indicate that she doesn�t care about the result� The axiom for all is

all � xi � true

This is the bunch of all elements�

� Logical Speci�cations for Functional Programs

Union and Intersection The speci�cation x�y speci�es that at least one of
speci�cations x and y must be met� The speci�cation x�y speci�es that both x
and y must be met� Their axioms are

x� y � xi � 	i � x
� 	i � y

x�y � xi � 	i � x
� 	i � y

for i not free in x or y�

Assert The speci�cation P � x expresses that x must be met when P is true�
and otherwise any result will do� Its axiom is

P � x � if P then x else all

In this usage� P is called an assertion�

Guard The speci�cation P � x expresses that x must be met when P is true�
and is otherwise impossible to meet� Its axiom is

P � x � if P then x else null

In this usage� P is called a guard�
Seen as unary operators� P � and P � are duals and adjoint�

Try The speci�cation try x expresses that x must be met if possible� Its axiom
is

try x � 	x �� null
 � x � if x �� null then x else all

The speci�cation try x else y expresses that x must be met if possible� and
if not� y must be met� Its axiom is

try x else y � if x �� null then x else y

This construct expresses a kind of backtracking or dynamic exception handling
where failure is expressed by null�

Unlike our other speci�cation constructs� try and try else are not monotonic
in all their speci�cation operands� with respect to the subbunch ordering�

Lambda The speci�cation language has a more general abstraction operator
than the programming language� For identi�er i and expression x� the following
is an expression

�i � x

For any element e

	�i � x
 e � 	Substitute e for i everywhere in x

Mathematics of Program Construction ��� LNCS ���� �

Furthermore application distributes over bunch formation� so� for example�

f null � null

f 	y� z
 � 	f y
� 	f z

Thus variables always represent elements�
Lambda abstraction is untyped with respect to the programming language

types� However� in order to prevent paradoxical expressions� it is typed with
respect to the order of the arguments� Until Sect� � all arguments will be �rst
order� that is� nonfunctional�

Let Likewise� the speci�cation language has a more general let construct� It is
de�ned by

let i � x � 	�i � x
 all

Typically x is of the form P � y� in which case it can be seen that let i � 	P � y

is the union over all elements i such that P is true� of y�

��� Syntactic Issues

Precedence The precedence of operators used in this paper will be �rst juxta�
position 	application and indexing
 and then in order

�
�

cj

�
�

�
	

�
���
�

�
��
�
�
�

�

� � � �
if then else

try
try else

Binders
�

�

��

�
w
vw

Binders 	�� let � x� � �
� �� and � are right associative� so that we can write�
for example�

�i � 	P � 	let j � 	Q � R � x

as

�i � P � let j �Q � R � x

Relation operators are continuing� so we can write� for example

	x w y
 � 	y w z

as

x w y w z

� Logical Speci�cations for Functional Programs

Syntactic Sugar For all binders� we allow the following abbreviation� If the
textually �rst identi�er to appear in the body is the bound variable� then the
bound variable and the subsequent dot can be omitted� Thus

�i � i � T � x

can be written as
�i � T � x

and
let i � i� e � x

can be written as
let i � e � x

In programs� we always use the abbreviated notation�

� Writing Speci�cations

In this section several examples are given of using the speci�cation language�
We remind the reader that the free variables together represent the state

in which the expression is evaluated and thus each free variable represents an
element� Restrictions on these variables� i�e� the type of the state� will be stated
informally�

An implementation is obliged to give a result described by the speci�cation�
Thus null is unimplementable� The speci�cation

if x� � then null else �

can be satis�ed in states such that x ��� but not when x��� Perhaps the speci�er
has no intention of providing a state for which the speci�cation is null� but to the
implementor every input is a possibility� A speci�cation is called implementable

if there is no state in which it is equivalent to null�

��� Searching

Suppose that L is a list variable of a type T � and x is a variable of type T �
Informally� we need to �nd an index of an item x of a list L� A �rst attempt at
formally specifying this is

xi � L i� x

This says that we want any i such that L i� x� However� x may not occur in L
at all� For such a case� the above speci�cation is null� and so the speci�cation
is unimplementable� Suppose that we intend to use the speci�cation only when
x occurs in the list� Then we don�t care what the result would be if x did not
occur� and the speci�cation should be

	�i � L i� x
 � 	xi � L i� x

Mathematics of Program Construction ��� LNCS ���� �

This is still not entirely satisfactory if it is not guaranteed by the axioms con�
cerning lists that L i � x is false for values of i that are not valid indices of L�
The next speci�cation covers this situation

	�i � �����L � L i � x
 � 	xi � �����L � L i� x

	Note the use of the syntactic sugar from Sect� ����
 The try operator can be
used to make this more concise�

try 	xi � �����L � L i� x

It is noteworthy that this is a nondeterministic problem� When x appears
more than once in the list� the result can be any suitable index� A deterministic
speci�cation language would necessitate overspeci�cation�

��� Fermat�s Last Theorem

Quite often an informal search speci�cation will be of the form �if there is an x
such that P x� then f x� else y�� The if then else construct can not be used
to formalize this as x will not be available in the then�part� A solution is to use
the try else construct� For example� the following speci�cation is � � if Fermat�s
Last Theorem is true and is some counterexample otherwise�

try 	let n � nat � � let i � nat � let j � nat � let k � nat �

in � jn � kn � �n� i� j� k�

else � �

��� Sorting

Suppose that � is a relation� on a type T � that is re exive� transitive� and total
	that is� for all x and y in T � either x�y or y�x
� We wish to specify that� given
a list� we want a permutation of it that is sorted with respect to this relation�
We will present two equivalent speci�cations to illustrate the range of styles that
the speci�cation language permits�

A Logic Oriented Speci�cation The �rst speci�cation is more logic oriented�
It proceeds by de�ning a predicate describing the desired relationship between
the input and output of the program� First we de�ne a function that returns the
number of times an item occurs in a list�

count L x
def
� cjxj � �����L � x� L j

This uses the counting operator cj that gives the number of elements in a bunch�
Now we de�ne what it is for one list to be a permutation of another

Perm LM
def
� x � count L x� count M x

� Logical Speci�cations for Functional Programs

Next is a predicate that indicates a list is monotone

Mono M
def
� j � �����M �M 	j 	 �
�M j

The �nal predicate states that one list is a sorted permutation of another

Sortof LM
def
� Perm LM �Mono M

Finally this predicate is used to form the speci�cation�

sort
def
� �L � T � � xM � T � � Sortof LM

An Expression Oriented Speci�cation The second speci�cation is more ex�
pression oriented� First we de�ne a permutation function as the smallest function
satisfying

perm � �L�T � � L� 	 letM � perm L � let i � let j � �� i � j ��M �

M ����� i� � �M j� � M �i � ���� j� � �M i� � M �j � �����M �

	The meaning of �smallest function� will be explained in section ����
 This func�
tion nondeterministically returns any permutation of its argument� Next we de�
�ne the bunch of all ordered lists over T as the smallest bunch satisfying

ordered � � �� 	letM �ordered � lett �T � 	i ������M � t�M i
 � �t��M

Finally one can specify sort as

sort
def
� �L � T � � ordered � perm L

� Re�nement

��� The Re�nement Relation

We de�ne the re�nement relation x w y to mean that y � x universally� By
�universally� we mean in all states� that is for all assignments of elements to the
free variables of expressions x and y� We say x is re�ned by y� For example� that
��� is re�ned by � is written

�� � w �

For another example�

n � nat � n � 	�� �
 w n � �

The re�nement relation is a partial order on speci�cations�
Programming from a speci�cation x is the �nding of a program y such that

x w y� To simplify this process� we �nd a sequence of speci�cations x� � � � xn
where x� is x and xn is y� and where xi w xi�� is a fairly trivial theorem� for
each i� This is a formalization of the process of stepwise re�nement�

Note that some authors write x v y for re�nement where we write x w
y� Perhaps they believe that �bigger is better�� but we �nd the analogy with
standard set notation 	�
 too strong to resist�

Mathematics of Program Construction ��� LNCS ����

��� Programming with Re�ned Speci�cations

At this point we can add one �nal construct to the programming language�
Any speci�cation x can be considered to be a program provided a program y is
supplied such that x w y� We can think of x as a subprogram name and of y as
its subprogram body�

Recursion and mutual recursion are allowed� Since w is re exive� it is always
possible to re�ne x with x itself� This leads to correct programs� but ones that
take an in�nite amount of time to execute� This will be discussed further in Sect�
��

A programming notation for recursion could be de�ned� but we have chosen
not to do so�

��� Function Re�nement

Because we wish to speak of re�nement of functions� we must extend the sub�
bunch relation to functions� This is done by de�ning

	�i � y
 � 	�i � x

if for all elementary i�

y � x

Thus if x w y� then �i � x w �i � y�

� Laws of Programming

In this section we will present a number of theorems that can be used to prove
re�nement relations� Numerous other theorems could be presented� this is a
selection of those most useful for developing programs�

Some of the following laws show mutual re�nement� that is both x w y and
y w x� we will use x vw y to show this� Some of the following laws apply to both
assertions and guards� we will use �� to mean one of � or �� That is� the laws
where �� appears 	even if more than once
 each abbreviate exactly two laws� one
for � and one for ��

Union elimination	 x� y w x
If introduction
elimination	 x vw if P then x else x
Case analysis	

if P then x else y vw if P then 	P �� x
 else y

if P then x else y vw if P then x else 	�P �� y

Let introduction
elimination	 If i is not free in x� then

x vw let i � x

� Logical Speci�cations for Functional Programs

The example law for let 	 If e is an element and 	Substitute e for i every�
where in P
� then

let i � P � x w let i � P � 	Substitute e for i anywhere in x

The example law for x	 If e is an element and 	Substitute e for i everywhere
in P
� then

xi � P w e

Guard introduction	 x w P � x
Assertion elimination	 P � x w x
Guard strengthening	 If 	Q� P
 universally� then P � x w Q � x
Assertion weakening	 If 	Q� P
 universally� then Q � x w P � x
Assertion
guard use	 If 	P � y � x
 universally� then P �� x w P �� y
Assertion
guard combining
splitting	 P �� Q �� x vw P �Q �� x
Adjunction	 	P � x w y
 � 	x w P � y

One point	 If e is an element�

i � e �� x vw i� e �� 	Substitute e for i anywhere in x

Application introduction
elimination	 If �i�x distributes over bunch union�

then

	�i � x
 y vw 	Substitute y for i everywhere in x

Lambda introduction	 If x w y then �i � x w �i � y

There are a great many laws for moving assertions and guards� Inward move�
ment laws say that assertions and guards that apply to a speci�cation apply to
any part of the speci�cation� For example�

An example inward movement law	 P � x� y w P � 	P � x
� y

Outward movement laws say that assertions and guards that apply to all parts
of a speci�cation apply to the whole speci�cation�

An example outward movement law	 If i is not free in P � then

let i � P � x w P � let i � x

Except for try and try else� all the operators we have introduced that form
speci�cations from speci�cation operands are monotonic in those operands� with
respect to the re�nement relation� This gives rise to a number of monotonicity
laws that will be used implicitly� For example�

An example monotonicity law	 If x w y� then

if P then x else z w if P then y else z

Monotonicity laws allow application of the other laws deep within the structure
of a speci�cation�

Mathematics of Program Construction ��� LNCS ����
�

� Deriving Programs

In this section� we demonstrate a programming methodology based on the re�
�nement relation�

��� Searching

Our searching speci�cation from Sect� �� was

	�i � �����L � L i � x
 � 	xi � �����L � L i� x

We add a parameter j so we can specify searching in the part of list L preceding
index j

search before
def
� �j ����� ���L � 	�i����� j � Li�x
 � 	xi������L � Li�x

The original speci�cation is re�ned by

search before 	�L

It remains to supply a program that re�nes search before � Let j represent
any element of type ���� ���L� We start by re�ning search before j� 	Note that
hints appear between the two speci�cations they apply to�

search before j if introduction and case analysis
w if L 	j 	 �
 � x then 	L 	j 	 �
 � x � search before j

else 	L 	j 	 �
 �� x � search before j

De�nition of search before � assertion combining� and assertion weakening
w if L 	j 	 �
 � x then 	L 	j 	 �
 � x � 	xi � �����L � L i � x

else 	L 	j 	 �
 �� x � 	�i � ���� j � L i� x
 � 	xi � �����L � L i� x

Assertion use� example law� and assertion elimination in the then�part
Logic and assertion weakening in the else�part
w if L 	j 	 �
 � x then j 	 �

else 		�i � ���� j	� � L i � x
 � 	xi � �����L � L i � x

If there exists an i in ���� j	�� then j � �
w if L 	j 	 �
 � x then j 	 �

else 		�i � ���� j	� � L i � x
 � j � ���� ���L �

	xi � �����L � L i� x

Assertion weakening and assertion splitting
w if L 	j 	 �
 � x then j 	 �

else 		j 	 �
 � ���� ���L �

	�i � ���� j	� � L i � x
 �

	xi � �����L � L i� x

De�nition of search before and application introduction
w if L 	j 	 �
 � x then j 	 �

else search before 	j 	 �

We can add to both sides the range assertion on j and then use the function
re�nement law of Sect� ��� 	lambda introduction
� This gives us

� Logical Speci�cations for Functional Programs

search before

w �j � ���� ���L � if L 	j 	 �
 � x then j 	 �
else search before 	j 	 �

��� Sorting

As a second example of deriving programs we derive a merge sort program from
the sorting speci�cation given in Sect� ���

sort L De�nition
w xM � Sortof LM if introduction and case analysis
w if �L� �

then 	�L� � � xM � Sortof LM

else 	�L � � � xM � Sortof LM

The then�branch is re�ned as follows

�L� � � xM � Sortof LM Assertion use and elimination
w xM ��L� �� Sortof LM Example
w L

We now re�ne the else�branch� The �rst idea is to divide and conquer�

�L � � � xM � Sortof LM
Let introduction and assertion elimination
w let T � let U � xM � Sortof LM Guard introduction
w let T � let U � L� T � U � xM � Sortof LM One point
w let T � let U � L� T � U � xM � Sortof 	T � U
M

We break o� the derivation at this point to consider the next move�
Having divided the list� we will sort the two parts� We need to replace the

predicate Sortof by one in terms of the sorted parts� We call that predicate
Mergeof and the desired theorem is

Mergeof 	sort T
 	sort U
M � Sortof 	T � U
M

One de�nition that yields this theorem is

Mergeof T U M
def
� 	Mono T �Mono U
� Sortof 	T � U
M

Using the theorem we continue the derivation with

w let T � let U � L� T � U � xM �Mergeof 	sort T
 	sort U
M

We defer the implementation of Mergeof so for now we just de�ne

merge
def
� �X �T � � �Y �T � � MonoX �Mono Y � xM �Mergeof X Y M

So the derivation continues

Mathematics of Program Construction ��� LNCS ����
�

w let T � let U � L� T � U � merge 	sort T
 	sort U

Guard strengthening
w let T � let U � T � L������L div �� � U � L��L div �����L� �

merge 	sort T
 	sort U

Guard movement
w let T � L������L div �� �

let U � L��L div �����L� �

merge 	sort T
 	sort U

We now need to re�ne the merge speci�cation� Assuming X and Y of the
right types we have

merge X Y De�nition
w Mono X � Mono Y � xM �Mergeof X Y M
if introduction and case analysis
w if X � � � then 	Mono Y � X � � � � xM �Mergeof X Y M

else if Y � � � then 	Mono X � Y � � � � xM �Mergeof X Y M

else 	Mono X � Mono Y � X �� � � �� Y �

xM �Mergeof X Y M

Assertion use and example
w if X � � � then Y

else if Y � � � thenX
else 	Mono X � Mono Y � X �� � � �� Y �

xM �Mergeof X Y M

if introduction

w if X � � � then Y
else if Y � � � thenX
else if X �� Y � then 	Mono X � Mono Y � X �� � � �� Y � X �� Y � �

xM �Mergeof X Y M

else 	Mono X � Mono Y � X �� � � �� Y � Y ��X � �

xM �Mergeof X Y M

Assertion use� example� and de�nition of merge
w if X � � � then Y

else if Y � � � thenX
else if X �� Y � then �X �� � merge 	X������X�
 Y
else �Y �� � merge X 	Y ������Y �

Summarizing the above� we have proven

sort

w �L � T � � if �L� �
then L
else 	 let T � L������L div �� �

let U � L��L div �����L� �

merge 	sort T
 	sort U

and

merge

� Logical Speci�cations for Functional Programs

w �X � T � � �Y � T � �

if X � � � then Y
else if Y � � � thenX
else if X �� Y � then �X �� � merge 	X������X�
 Y
else �Y �� � merge X 	Y ������Y �

	 Higher Order Programming

In Sect� ��� we extended the subbunch relation to functions� This allows one to
develop functions that have functional results� For example�

�i � nat � �j � nat � i� j � 	�� �� �

w �i � nat � �j � nat � i� j � �

We are not yet ready to develop functions that have functional parameters�
Recall that parameters always represent elements� We extend the notion of

elementhood to functions before talking about passing functions as arguments�
In order to avoid circularity in the de�nition of �element� and to preclude

paradoxical expressions� we impose a simple type system on bunches 	Church
����
� Expressions containing elements of primitive types such as bool� nat� and
lists of such� we say are of type �� A lambda expression is written �im � x where
m is a type� If x is of type n� �im � x is of type m �� n� In determining the type
of the body x or any expression within it� it is assumed that i has type m� A
function of type m �� n� can be applied only to arguments of type m� the type
of the application is n�

We say that a lambda expression �im � x is an element i� for each element
e of type n� 	�im � x
e is an element� For example� the elements of �i� � �� � are
�i� � � and �i� � ��

This de�nition has the interesting� but not problematic� consequence that
there are non�null functions that are proper subbunches of elements� For exam�
ple�

	�i� � i� � � �
 � 	�i� � �

To avoid cluttering speci�cations� including programs� with subscripts� we
adopt the following convention�

�i � x � z

abbreviates
�im � i � x � z

and
�i x � y � z

abbreviates
�im��n � i x � y � z

where x is of typem and y is of type n� Similarly for functions of more arguments�
This makes sense because a function i that maps elements of x to elements of y
is accurately described by the predicate i x � y�

Mathematics of Program Construction ��� LNCS ����
�

The de�nition of application is the same for functional parameters as for non�
functional parameters� That is� it is the union over all substitutions of elements
of the argument for the parameter�

Let us look at how de�nitions of application and elementhood a�ect higher
order functions� Suppose we have a higher order function map de�ned by

�f nat �nat � �L �nat� � xM �nat� � �M ��L � 	i � �����L�M i�f 	Li

then the application

map 	�i � nat � i� 	�� �

 ��� ��

is equivalent to
��� ��� ��� ��

This is perhaps a somewhat surprising consequence� but the alternative of allow�
ing parameters to represent nondeterministic functions has serious pitfalls 	see
	Meertens ����
 and the discussion in Sect� �� below
�

As the map example suggests� the formalism presented here can be used to
provide formal de�nitions of� and prove properties of� higher order operators
such as those of Bird 	����
�

 Termination and Timing

As noted previously� programs that are correct according to the calculus given so
far in this paper may specify nonterminating computations� This is because any
speci�cation x may be used as a program provided it is re�ned by a program�
with recursion allowed� For example� we might re�ne x by if b then x else x or
even by just x�

It is possible 	and often reasonable
 to verify that a program terminates�
or to verify a time bound for it� by analysing the program after it has been
derived without explicit consideration of time� If the veri�cation fails� it is back
to the drawing board� Such analysis is discussed in� for example� 	Sands ����
�
In this section we explore an alternative idea� that of incorporating timing 	and
hence termination
 requirements into the original speci�cation and re�ning such
speci�cations to obtain a program�

��� Speci�cations with Time

Rather than deal with termination and nontermination as a duality� we deal
with the time required for a computation to complete� First we must expand the
idea of an observation to include the time that is required for a computation�
Speci�cations with time are written as P�T where P is a speci�cation of a value
and T is a number speci�cation� The kind of numbers used in the T part may
include an in�nity value� Nondeterministic expressions may be used to give a
range of acceptable times� 	Syntactically � binds closer than any operator� even
juxtaposition�

� Logical Speci�cations for Functional Programs

Programming and other operators on speci�cations are lifted to speci�cations
with time according to a timing policy� A timing policy re ects implementation
decisions 	such as whether operands are evaluated in sequence or parallel
� lan�
guage design decisions 	such as strictness
� and decisions about how much opera�
tions should cost� We will exhibit a particular timing policy based on sequential
implementation� strict application� and charging at least one unit of time for
each recursive call�

Primitives such as multiplication are lifted to speci�cations with time as

x�a � y�b � 	x� y
�	a� b

The if is lifted as

if x�a then y�b else z�c � 	if x then y else z
�	a� if x then b else c

Speci�cations of functions with time specify both the time required to produce
the functions and the time required to apply it 	as a function of its argument
�
The speci�cation 	�i � x�a
�b speci�es a function that takes b time units to
produce and 	�i � a
y time units to apply to y� The following way of lifting
application models eager evaluation where the cost of evaluating the argument
is assessed at the point of application� Let 	�i �x�a
� mean �i �x and 	�i �x�a
�

mean �i � a� Now

f�b y�c � 	f� y
�	b� c� f� y

Reference to a re�ned speci�cation is allowed as a programming construct
	Sect� ���
� but extra time may be optionally added� For example� if x�� is a
re�ned speci�cation� one may make reference to x��� In any loop of references�
by this timing policy� at least � time unit must be added in the loop� Thus the
observation that x�a w x�a� although true� does not allow us to use x�a in a
program� On the other hand� if x�a w x�	a��
 is true� x�a 	or x�	a��

 may
be used as a program� For example� the observation that x�� w x�	� � �

means that x�� may be used as a program� but x�� is not a very useful
speci�cation� Recursive reference should be a bit clearer with an example�

Since the su�x �� occurs quite frequently we will take the liberty of not
writing it� leaving it implicit�

��� An Example

Let 	L be the sum of the elements of a list of naturals L� Our speci�cation with
time of a summation function is

sum
def
� �L � nat� � 		L
�	�L

The time required to produce the summation function must be �� that is no
recursive calls are allowed� by the convention of not writing ��� This is easily
achieved if we write the function as a constant� The ��L means that the time
required to apply the summation function to a list L is �L� We will write sum �

Mathematics of Program Construction ��� LNCS ����
�

for the same speci�cation with the 	implicit
 �� replaced by ��� However 	L
is speci�ed in detail� the following should hold

L� � � � 	L w �

L �� � � � 	L w L � �		L������L�

The following are also true

L� � � � �L w �

L �� � � � �L w � ��	L������L�

With these theorems we can quickly derive the obvious program

sum if introduction� case analysis� �rst and third theorems
w �L � nat� � if L� � � then ���

else 	L �� � � � 		L
�	�L

Second and fourth theorems
w �L � nat� � if L� � � then �

else 	L � �		L������L�

�	� ��	L������L�

Application for speci�cations with time
w �L � nat� � if L� � � then � else L � � sum � 	L������L�

��� Higher Order Speci�cations with Time

The time taken to apply a function obtained from an application of a higher�order
function may well depend on the time to apply a closure� The
 and � notation
allows speci�cation of such functions� An e�cient map function is speci�ed by

�f nat � nat � �L � nat� �

	xM � nat� � �M ��L � 	i � �����L�M i� f� 	L i

�	
P

i������L

� � f� 	L i

� Pattern Matching

In modern function programming languages� functions are generally de�ned by
a sequence of equations with the appropriate de�nition being picked according
to pattern matching� Likewise the case construct of� for example� Haskell works
by pattern matching� We look here at how this syntactic device can be given a
semantics using the notation and theory presented earlier�

Since function de�nition by pattern matching can be understood in terms of
the case construct we discuss only that� Consider the case expression

case x of ff i� y�
g j � z g

Where f and g are functions mapping types T and U respectively to a third
type� The case expression can be understood as the speci�cation

x � f T� g U � let k � x � 	let i � k � f i � y
�
	let j � k � g j � z

�� Logical Speci�cations for Functional Programs

This interpretation of the case statement is nondeterministic when patterns
overlap� Sequential pattern matching is modelled somewhat di�erently� The
above case expression can be modelled as

let k � x �if k � f T then 	let i � k � f i � y

else if k � g U then 	let j � k � g j � z

else all

�� Related Work

The use of logic to express the relationship between input and output dates back
to work by Turing 	Morris and Jones ����
� and is more recently found in the
work of� for example� Hoare 	����
 and Dijkstra 	����
�

The uniform treatment of abstract speci�cations and programs is becoming
common in imperative programmingmethodologies� Back 	����
� Hehner 	����
�
Morgan 	����
� and Morris 	����
� building on the work of Dijkstra 	����
� all
extend imperative languages to include arbitrary speci�cations� A new method�
ology of Hehner 	����
 treats the programming language as a subset of logic and
uses logic as the full speci�cation language�

Some of the speci�cation constructs presented here are based on constructs
that have been used in imperative speci�cation� The �� try� and try else oper�
ators� for example� are similar to operators described by Morgan 	����
 and!or
Nelson 	����
�

In the functional programming community nondeterministic speci�cations
have been avoided� perhaps because it is feared that nondeterminism does not
mix with referential transparency� An exception is the work of S"ndergaard and
Sestoft 	����� ����
 which explores several varieties of nondeterminism and their
relationships to referential transparency� Redelmeier 	����
 used a form of weak�
est precondition semantics to de�ne a programming language� but did not pursue
nondeterminism or program derivation� Three bodies of work in functional pro�
gram transformation do allow nondeterministic speci�cations� These are the CIP
project 	Bauer et al� ����
� Meertens�s essay 	Meertens ����
� and Hoogerwo�
ord�s thesis 	Hoogerwoord ����
�

The CIP project involves not only functional programming� but also algebraic
speci�cation of data types and imperative programming� Only the functional
programming aspects of CIP are discussed here� CIP is also a transformational
approach based on nondeterministic speci�cation� In CIP each speci�cation is
associated with a set of values called its breadth� One speci�cation re�nes an�
other if its breadth is a subset of the other�s� CIP includes a some quanti�er
which closely parallels the x quanti�er presented here� The signi�cant di�erences
between CIP and the formalism presented here are mainly in the treatment of
errors� and predicates�

Errors in CIP are represented by a bottom value� The presence of the bottom
value in the breadth of a speci�cation means that the speci�cation may lead
to error� Many transformation rules have special side conditions about errors�

Mathematics of Program Construction ��� LNCS ���� �

especially in predicates� In the present formalism� errors are represented by all
or by incompleteness with a resulting simpli�cation�

Predicates in CIP are simply boolean speci�cations� This has a unifying ef�
fect� but� as with errors� adds side conditions to transformation rules� for example
saying that the predicate must be deterministic and must not be in error� In the
present formalism� we do not specify the exact language used for predicates� but
we do assume that each predicate is either true or false in each state� although
the logic may not be complete enough to say which� For example ���� � is not
considered to be in error� nor to be nondeterministic� As in CIP� the side condi�
tions about determinism are there� but are somewhat hidden� We are currently
looking at allowing nondeterministic predicates without complicating the laws�

Recently M#oller 	����
 proposed an �assertion� construct for CIP� His con�
struct� P � x is similar to both our guard and assertion in that it is x when
P is true� but di�ers from both our constructs in that it is the bottom 	error

value when P is false� It is faithful to the notion of assertions as safety nets�
By contrast� our assertion construct is used to represent context� The di�erence
is illustrated by the assertion elimination law� which does not hold for M#oller�s
assertions�

Meertens� in his excellent paper on transformational programming 	Meertens
����
� discusses nondeterministic functional programs as a uni�ed notation for
speci�cations and programs� Unfortunately� Meertens confuses null 	in his no�
tation ����
 with the unde�ned value 	the error value
� This leads him to choose
between rejecting the validity of x w null and rejecting that w means �may
	as a task
 be replaced by�� The solution is to accept both� regard null as the
over�determined value� and use the undetermined value all to represent errors�

Meertens uses direct substitution for application� He also adopts the rule
	f� g
 x � f x� g x� He correctly notes that these seemingly reasonable choices
lead to contradictions� The following example is given

f
def
� �x � x

g
def
� �x �

F
def
� �� � � � � � �

then

� � � 	���
� 	�
 � Ff� Fg � F 	f� g
 � 	f� g
��	f� g
� � 	��
�	��
 � � �� �� �

Our formalism avoids this paradox by carefully de�ning elementhood and allow�
ing only elements as the values of parameters�

One outgrowth of Meertens�s paper is the so�called Bird�Meertens formal�
ism� Initially� nondeterministic speci�cation was ignored 	see e�g� 	Bird ����

�
In 	Bird ����
� Bird discusses nondeterministic speci�cations� but not the re�
�nement order on them�

Hoogerwoord in his thesis 	Hoogerwoord����
 develops a calculational method
of functional program development based on logical speci�cations� In contrast
to the present paper� he does not treat speci�cations and expressions as objects

�� Logical Speci�cations for Functional Programs

of the same sort� and thus does not have a re�nement calculus� rather� speci��
cations are predicates that describe the desired expressions� Nondeterminism is
not allowed in expressions themselves� but a speci�cation may� of course� under�
determine the meaning of the desired expression�

�� Conclusions

We have presented a simple re�nement calculus for functional programming
and an attendant programming methodology� The key aspect of this calculus is
that it treats speci�cations and executable expressions uniformly� This allows the
programmer to formally express and to verify each step of a stepwise re�nement�
The calculus includes timing� not just for analysis after program development�
but as a guide to development�

Several of the speci�cation operators presented and used herein are new or
new to functional programming� as far as we know� These include � � �� let �
try� and try else�

The speci�cation language is a small extension to a functional programming
language� The extension allows the speci�er to state the relationship between the
free variables and the result of an expression� Because logic can be used to state
this relationship� the language is expressive and natural to anyone familiar with
logic� The speci�er needs to state exactly the desired relationship and nothing
more� there is no requirement that the relationship be functional� Furthermore�
the relationship can be expressed in ways that are completely nonalgorithmic�

Acknowledgements We would like to thank Ray Blaak� Andrew Malton� and
the referees for helpful comments on earlier drafts� We gratefully acknowledge
the support of the Department of Computer Science at the University of Toronto
and the Natural Sciences and Engineering Research Council�

Mathematics of Program Construction ��� LNCS ���� ��

References

R�J�R� Back� A calculus of re�nement for program derivations� Technical Report ���
Department of Computer Science� �Abo Akademi� Finland�
����

F�L� Bauer� H� Ehler� A� Horsch� B� M�oller� H� Partsch� O� Puakner� and P� Pepper�
The Munich Project CIP� Volume II� The Program Transformation System CIP�S�
Number ��� in Lecture Notes in Computer Science� Springer�Verlag�
����

R�S� Bird� Introduction to the theory of lists� In M� Broy� editor� Logic of Programming
and Calculi of Discrete Design� number �� in NATO ASI Series F� Springer�
����

R�S� Bird� A calculus of functions for program derivation� In David A� Turner� editor�
Research Topics in Functional Programming� The UT Year of Programming Series�
Addison�Wesley�
����

Alonzo Church� A formulation of the simple theory of types� J� Symbolic Logic� ����	
���
����

E�W� Dijkstra� Guarded commands� nondeterminacy� and formal derivation of pro�
grams� Communications of the ACM�
��������	����
����

Eric C�R� Hehner� The Logic of Programming� Prentice�Hall International�
����
Eric C�R� Hehner� A practical theory of programming� Science of Computer Program�

ming�
��
��	
���
����
C�A�R� Hoare� An axiomatic basis for computer programming� Communications of the

ACM�
��
������	���� ����
����
Rob Hoogerwoord� The design of functional programs� a calculational approach� PhD

Thesis� Technische Universiteit Eindhoven�
����
Lambert Meertens� Algorithmics� In J�W� de Bakker� M� Hazewinkel� and J�K�

Lenstra� editors� Mathematics and Computer Science� number
 in CWI Mono�
graphs� North�Holland�
����

Bernhard M�oller� Applicative assertions� In J�L�A� van de Snepscheut� editor� Mathe�

matics of Program Construction� number ��� in Lecture Notes in Computer Science�
Springer�Verlag�
����

Carroll Morgan� The speci�cation statement� Trans� on Programming Languages and

Systems�
��������	�
��
����
F�L� Morris and C�B� Jones� An early program proof by Alan Turing� Annals of the

History of Computing� �����
��	
���
����
Joseph M� Morris� Programs from speci�cations� In E� W� Dijkstra� editor� Formal

Development of Programs and Proofs� pages �
	

�� Addison�Wesley�
����
Greg Nelson� A generalization of Dijkstras calculus� Technical Report
�� Digital

Systems Research Center� Palo Alto� CA� U�S�A�� April
���� Also published in
Trans� on Programming Languages and Systems�

�����
�	��
�
����

D� Hugh Redelmeier� Towards Practical Functional Programming� PhD thesis� Uni�
versity of Toronto�
����

David Sands� Complexity analysis for a lazy higher�order language� In Proceedings of

the ���� Glasgow Functional Programming Workshop� Workshops in Computing�
Springer�Verlag�
����

Harald S�ndergaard and Peter Sestoft� Nondeterminism in functional languages� Tech�
nical Report ���
�� Department of Computer Science� University of Melbourne�
Australia�
����

Harald S�ndergaard and Peter Sestoft� Referential transparency� de�niteness and un�
foldability� Acta Informatica� ���������	�
��
����

This article was processed using the LaTEX macro package with LLNCS style

