
HARPO/L: A LANGUAGE FOR HARDWARE/SOFTWARE CODESIGN.

Theodore Norvell, Xiangwen Li, Dianyong Zhang

Electrical and Computer Engineering
Memorial University

Md. Ashraful Tuhin Alam

Computer Science
University of Calgary

ABSTRACT

We present the main features of a programming language de-
signed to be applicable for parallel computing on a wide range
of platforms, including a range of programmable hardware.
Our language supports an object oriented, yet statically in-
stantiated style of programming; parallel processing with com-
munication and synchronization by rendezvous; and reusabil-
ity via generic classes, interfaces, and connections between
objects.

1. INTRODUCTION

Advances in digital hardware densities make it feasible to im-
plement large portions of applications on Application Spe-
cific Integrated Circuits (ASIC) or programmable hardware
such as Field Programmable Gate Arrays (FPGA) and Coarse
Grained Reconfigurable Architectures (CGRA). However por-
tions of applications not needing the additional speed of re-
configurable hardware will continue to be implemented using
more space-efficient microprocessors (μP), which could be on
a different chips, on the same chip, or even virtual processors
build on a programmable hardware substrate. We could char-
acterize this split as one of ‘hardware’ vs. ‘software,’ but in
reality we are just talking about various points in a complex
space of programmable hardware.

In current practice different implementation technologies
use different programming or hardware description languages.
Thus it is necessary to decide on implementation technology
early in the design process. If the design is to use multiple
implementation technologies, one must decide on how the de-
sign will be split among these technologies early in the design
process. It is then difficult to migrate future generations of a
product to new technologies or to reuse design components
where the implementation technolgy is different.

It would be desirable to use a programming language that
can be efficiently and effectively targeted toward a variety of
implementation platforms. In this way, how a system is dis-
tributed among implementation technologies can be decided
after the system’s behaviour is designed. Indeed different

This work was supported by the National Science and Engineering Re-
search Council and Memorial University’s graduate fellowships program.

members of a product family might employ different distri-
butions.

This paper explains the design of one such programming
language. Our requirements include:

• The language must support good engineering practices
such as decomposition and information hiding.

• The language must support reusability and ‘program-
ming in the large’.

• The language must support parallel, concurrent, and
distributed computing.

• The language must suitable for hardware implementa-
tion. Specifically it should not use dynamic memory al-
location; all addresses and communication paths should
be statically resolvable.

• The language must be simple and have a clearly defined
semantics.

The remainder of this paper discusses how our language,
HARPO/L (for HARdware Parallel Objects Language), achieves
these objectives.

2. STRUCTURE

2.1. Classes and objects

A HARPO/L program is a system of objects, each a member
of a class. Classes can be instantiated a number of times to
create objects. Superficially this resembles an object-oriented
programming language in the sense of Simula-67 and its suc-
cessors. However there is an important difference. In order
to meet the requirements that programs be implementable di-
rectly in hardware, we instantiate all objects statically, that
is at compile time. Furthermore, to meet the requirement that
references and communication paths be statically resolved there
is no assignment of object references.

Here (schematically) is a simple HARPO/L program con-
sisting of two classes and two objects.

(class Consumer
public proc put(in i : int8)

...
class)
(class Producer ...c.put(i)... class)
obj c := new Consumer()
obj p := new Producer()

Although the word new may connote heap allocation at
run-time, as in Java or C++, in HARPO/L all instantiation is
static.

Each instance of class Producer, above, is bound to the
object c. This makes this class difficulty to reuse. Instead
we can make the binding during instantiation. The slightly
improved program is(class Consumer ... class)

(class Consumer
public proc put(in i : int8)
...

class)
(class Producer

constructor(obj c : Consumer)
...c.put(i)...

class)
obj c0 := new Consumer()
obj p0 := new Producer(c0)
obj c1 := new Consumer()
obj p1 := new Producer(c1)

In this program, producer p0 communicates with con-
sumer c0 while producer p1 communicates with consumer
c1. It should be empathized that there is no reassignment of
constructor parameters such as c, thus for each object, the
communication path is fixed at compile time.

We can further improve the reusability of the Producer
class by use of an interface. The concept closely parallels the
interfaces of UML or Java, as illustrated below.

(interface ConsumerIntf
public proc put(in i : int8)

interface)
(class Consumer0 implements ConsumerIntf

...
class)
(class Consumer1 implements ConsumerIntf

...
class)
(class Producer

constructor(obj c : ConsumerIntf)
...c.put(i)...

class)
obj c0 := new Consumer0()
obj p0 := new Producer(c0)
obj c1 := new Consumer1()

obj p1 := new Producer(c1)

In this program, the same producer class is used to com-
municate with objects of different consumer classes.

2.2. Fields

Objects form a part-whole hierarchy by means of fields which
may be public or private.

2.3. Arrays

Arrays of objects can be used to represent repetitive struc-
tures. For example

obj source := new Source(stage(0))
obj sink := new Sink()
const N := 10
obj stage : Stage[N] :=

(for i:N do
(if i=N-1 then new Stage(sink)
else new Stage(stage(i+1)) if) for)

constructs an array of 10 Stage objects, each connecting to
the next, except the last which connects to the sink object.

2.4. Trees

To some extent other structures can be created via recursion.
For example a tree of nodes can be constructed using fields

(interface Node ...)

(class Leaf implements Node ...)
(class Branch implements Node

constructor(in i : int32)
private obj leftChild : Node :=

(if i=0 then new Leaf()
else new Branch(i-1) if)

private obj rightChild : Node :=
(if i=0 then new Leaf()
else new Branch(i-1) if)

...
class)
obj tree := new Branch(5)

However, whereas array members may be dynamically se-
lected using array indexing, there is no simple way to repre-
sent a pointer to a tree node.

(class BoundedBuffer{ type T extends Primitive }
public proc put(in i : T)
public proc get(out i : T)
constructor(in capacity : int32)
private obj buffer : T[capacity] :=

(for capacity do new T())
private obj head : int32 := 0
private obj size : int32 := 0
(thread

(wh true
(accept

put(in i : T) when size < capacity
buffer[(head + size) mod capacity] := i
size := size + 1

|
get(out i : T) when size > 0

i := buffer[head]
head := (head+1) mod capacity
size := size - 1))))

Fig. 1. A full example

3. BEHAVIOUR

3.1. Threads

All objects work concurrently. Each object contains zero or
more threads which execute a fairly standard repertoire of
commands: assignment (of primitive types only), alternation,
repetition, sequential composition, as well as parallel com-
position and parallel loops. The semantics of parallelism is
that of interleaving of atomic actions (reads, writes, and local
computations).

Interobject communication is by shared memory or by
rendezvous.

3.2. Rendezvous

Rendezvous [1, 2] is a mechanism for thread synchronization
and communication pioneered in the Ada programming lan-
guage. From the point of view of a client object, rendezvous
looks much like a method call in an language such as Java or
C++. In the client thread we might have

c.put(i)

which calls method put in server object c with parameter i.
The method is declared as public in the server class and is
implemented by an accept statement within one of that class’s
threads.

(class Consumer
public proc put(in i : int8)

(thread ...
(accept put(in i : int8)

... // Do something with i
accept)
...

thread)
class)

The rendezvous mechanism in HARPO/L allows servers
to offer clients a selection of services and allows guarding
(i.e. selective enabling) of services. A classic example illus-
trating both these facilities is that of a bounded buffer, shown
in Figure 1.

Although rendezvous is the language primitive, it can be
used to model other communication and synchronization mech-
anism such as channels and semaphores. Library classes for
these mechanisms could be implemented natively.

4. GENERICS

To support software reusability, classes can be generic over
type parameters. As with Java [3, 4], generic classes are based
on F-bounded polymorphism [5]. Generic classes and inter-
faces have one or more type parameters which are bounded
by super-type, for example

(interface GenericConsumerIntf{ type T
extends Primitive }

public proc put(in i : T)
interface)
(class GenericProducer{ type T extends Primitive }

constructor(obj c : GenericConsumerIntf{T})
...

class)
(class Int8Consumer

implements GenericConsumerIntf{int8}
...

class)
obj c0 := new Int8Consumer()
obj p0 := new GenericProducer{int8}(c0)

5. SPECIFICATION AND IMPLEMENTATION

Our group has been investigating several aspects of imple-
mentation of HARPO/L and like languages, especially with
an eye to implementation on CGRAs. This work is or will be
reported elsewhere and here we present only the barest skele-
ton.

• Detailed specification of the syntax, type system, and
semantics of the language. The type system is pre-
sented as a set of type inference rules. The operational

semantics is presented as a translation to coloured Petri
nets.

• Compiler front end. The front end implements parsing,
type checking, and object instantiation.

• Translation to C. The C back end converts the data struc-
ture produced by the front end to C code employing
calls to the Pthreads library.

• Intermediate representations for explicitly parallel code.
We have been investigating representations based on
Concurrent Single Static Assignment and translation to
executable data-flow graphs [6, 7, 8].

• Optimization of parallel code [8].

• Scheduling, placement, and routing for implementation
on CGRAs. We have been investigating scheduling,
placement and routing methods based on graph embed-
ding [9].

6. CONCLUSION

To end we review our goals and look at how they are achieved:

• The language must support good engineering practices
such as decomposition and information hiding.

– We employ an object based approach

• The language must support reusability and ‘program-
ming in the large’.

– Generic classes, interfaces and constructor para-
meters allow reusability. Constructor parameters
support architectural level design.

• The language must support parallel, concurrent, and
distributed computing.

– The language is explicitly parallel. Compilers can
determine what memory needs to be accessible
by which objects, as there are no pointers, which
allows distribution of objects according to their
sharing of memory. The communication primitive
is suitable for both shared memory and distributed
computing.

• The language must suitable for hardware implementa-
tion. Specifically it should not use dynamic memory al-
location all addresses and communication paths should
be statically resolvable.

– The language replaces dynamic memory alloca-
tion with a flexible, statically executed sublan-
guage for object instantiation and connection.

• The language must be simple and have a clearly defined
semantics.

– We have kept the language features simple and
consistent. We have formally defined both the sta-
tic semantics (using inference rules) and the dy-
namic semantics (using coloured Petri nets).

7. REFERENCES

[1] Jean D. Ichbiah, Bernd Krieg-Brueckner, Brian A. Wich-
mann, John G. P. Barnes, Olivier Roubine, and Jean-
Claude Heliard, “Rationale for the design of the Ada pro-
gramming language,” SIGPLAN Not., vol. 14, no. 6b, pp.
1–261, 1979.

[2] Gregory R. Andrews, Foundations of Multithreaded, Par-
allel, and distributed programming, Addison Wesley
Longman, 2000.

[3] Martin Odersky and Philip Wadler, “Pizza into java:
translating theory into practice,” in POPL ’97: Proceed-
ings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, NY,
USA, 1997, pp. 146–159, ACM.

[4] Gilad Bracha, Norman Cohen, Cristian Kemper, Steve
Marx, Martin Odersky, Sven-Eric Panitz, David Stout-
mire, Kreten Thorup, and Philip Wadler, “Adding gener-
ics to the java programming language: Participant draft
specification,” 2001.

[5] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John C. Mitchell, “F-bounded polymor-
phism for object-oriented programming,” in FPCA ’89:
Proceedings of the fourth international conference on
Functional programming languages and computer archi-
tecture, New York, NY, USA, 1989, pp. 273–280, ACM.

[6] Jaejin Lee, David A. Padua, and Samuel P. Midkiff, “Ba-
sic compiler algorithms for parallel programs,” in PPoPP
’99: Proceedings of the seventh ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming,
New York, NY, USA, 1999, pp. 1–12, ACM.

[7] John Teifel and Rajit Manohar, “Static tokens: Using
dataflow to automate concurrent pipeline synthesis,” in
Proceedings 10th International Symposium on Asynchro-
nous Circuits and Systems, 2004., 2004, pp. 17– –27.

[8] Dianyong Zhang, “Intermediate representations for com-
piling parallel languages to cgras,” M.S. thesis, Memorial
Universty of Newfoundland, 2008, Check title.

[9] Mohammed Ashraful Alam Tuhin, “Compiling paral-
lel applications to coarse-grained reconfigurable architec-
tures,” M.S. thesis, Memorial University of Newfound-
land, 2007.

