
Induce�Statements and Induce�Expressions�
Constructs for Inductive Programming

Theodore S� Norvell

Department of Computer Science
University of Toronto
norvell�cs�toronto�edu

Abstract� A for�loop is somewhat similar to an inductive argument�
Just as the truth of a proposition P �n � �� depends on the truth of
P �n�	 the correctness of iteration n�� of a for�loop depends on iteration
n having been completed correctly�
This paper presents the induce�construct	 a new programming construct
based on the form of inductive arguments� It is more expressive than
the for�loop yet less expressive than the while�loop� Like the for�loop	 it
is always terminating� Unlike the for�loop	 it allows the convenient and
concise expression of many algorithms� The for�loop traverses a set of
consecutive natural numbers	 the induce�construct generalizes to other
data types�
The induce�construct is presented in two forms	 one for imperative lan�
guages and one for functional languages� The expressive power of lan�
guages in which this is the only recursion construct is greater than prim�
itive recursion	 namely it is the multiply recursive functions in the 
rst
order case and the set of functions expressible in G�odel�s system T in
the general case�

� Data Types

We consider languages in which some of the data types are de�ned by recursion
as in Hoare�s �Recursive Data Types� ��� or the language ML� The example in
this paper use the following 	polymorphic
 types�

tree �	�
 � empty j node	�� tree �	�
� tree �	�



list	�
 � nil j ��list	�


tree n	�
 � empty j node	�� list	tree n	�




natural � � j natural�

	with the usual abbreviations � � 
�� � � �� � 
��� ���
� Files may be considered as
lists of characters� or as lists of lines� each line being a list of characters�

The members of a data type are all the values that can be �nitely generated
from its constructors� It is not possible to generate the same member in more
than one way�

A programmingmethodology for functional programmingwith such recursive
data types is presented by Burstall ��� which is largely the inspiration for the
present paper� The main progress that this paper makes over that one� is to
present an inductive programming construct to match the inductive data types
and to extend the ideas into the realm of imperative programming�




 Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

� Informal Description and Examples

sum �� �
for i � ���n� �
sum �� A�i� � sum
A�i� �� sum

end for

proc f�j � nat�
if j� �
then sum �� �
else const i �� j� �

f�i�
sum �� A�i� � sum
A�i� �� sum

end if

end f
f�n�

induce f�n�
when � � sum �� �
when i� � f�i�

sum �� A�i� � sum
A�i� �� sum

end f

Fig� �� �a� �b� �c�

��� An example� Consider the statement in Fig� 
	a
� Using a procedure def�
inition this algorithm might be written as in Fig� 
	b
� In this second form the
inductive structure is clearer� though somewhat buried in clutter� most of which
accompanies the parameter j� The then�part of the if�statement represents the
base case� while the else�part represents the induction step� In this particular
case a for�loop can be used just as well� but in general� one may want an al�
gorithm where the recursive call occurs elsewhere or where there are multiple
recursive calls�

To provide a structured way to write such statements� we introduce two
new statement forms� the induce�statement and the repeat�statement� Before
describing their syntax and semantics precisely� we give some examples� The for�
loop above can be rewritten as the induce�statement in Fig� 
	c
�� This works
as follows� Assume that the value of n is �� The value � 	 � 
�
 is matched
against each of two patterns 
 and i�� It matches the second pattern� the pattern
variable i 	which is local to the statement sequence that follows
 is instantiated
to the value 
� and the three�statement sequence following the second pattern is
commenced� The �rst statement� f	i
� is an example of a repeat�statement� Its
execution causes the entire process to repeat except with the value of i 	which
is 

 rather than the value of n� This time the �rst pattern matches� so sum

is initialized to 
� The repeat�statement� f	i
� is now complete so the following
two statements are executed and after that the entire induce�statement is then
complete�

The induce�statement can be seen as both declaring and calling a local pro�
cedure and the repeat�statement as recursively calling this procedure� In this
respect the induce�statement is similar to the �label� special form of some LISP
dialects �����

��� The Restriction guaranteeing termination� There is an important
restriction on induce�statements� the purpose of which is to guarantee that they

� The particular syntax used in this presentation is intended to be consistent in spirit
with Euclid and its progeny ����



Foundations of Software Technology � Theoretical Computer Science ���� �

can not be the source of nontermination� The argument of a repeat�statement
must be one of the variables in the pattern that guards it�

induce in order traversal�T�
when empty �
when node�label� left� right� �
in order traversal�left�
visit�label�
in order traversal�right�

end in order traversal

const Letter �� init������� ������ �abc�� �def��
�ghi�� �jkl�� �mno�� �prs��
�tuv�� �wxy��

varWord � array ���� of character
induce columns���
when � � printWord
when d� � induce letters���

when � �
when i� � Word�d� �� Letter�Phone�d�� i�

columns�d�
letters�i�

end letters
end columns

Fig� �� �a� �b�

��� Some More examples� The previous example showed the induce�state�
ment only as a poor alternative to the for�statement� But the repeat�statement
need not occur at the beginning of the statement sequence following its pattern�
By placing it at the end we obtain a �count�down� for�loop� By placing it in
the middle we can express algorithms that would otherwise require a recursive
procedure� Further� there can be more than one repeat�statement after a pattern�
The idea generalizes easily to any directly recursive data type� These last two
points are illustrated by Fig� �	a
�

Induce�statementsmay be nested� of course� In some cases it may be desirable
to repeat an outer loop from within an inner loop� This gives rise to mutual
recursion� For example� Fig� �	b
 is a �power loop� ���� that prints all seven letter
words that� on a North American phone� correspond to a seven�digit telephone
number stored in an array Phone�

� More Formal Description

��� Syntax� Here is the syntax used for induce�statements in this paper

Statement � induce Name	Arg

Clauses end Name

j Name	Variable

j Statement Statement

j etc�

Clauses � when Pattern � Statement

j Clauses Clauses

Pattern � constructor

j constructor	VarList

j Variable �

j Variable�Variable

VarList � Variable

j VarList �VarList

Name � identi�er

Variable � identi�er

Arg � Expression



� Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

��� Context constraints� First� two de�nitions that will be used in the con�
text constraints 	rules of static semantics
�

� The argument type of an induce�statement is the type of its argument�
� A repeat�statement is associated with the smallest enclosing induce�statement

with the same identi�er�

The following context constraints apply�


� The patterns in the when�clauses of an induce�statement must correspond
one�to�one with the cases of the type de�nition for the argument type of the
induce�statement�

�� The variables in the pattern are local to the following statement and may
not be assigned� The type of each a variable can be inferred from its position
within the variable list� and from the constructor�

�� Every repeat�statement must have an associated induce�statement�
�� The variable in a repeat�statementmust be of the same type as the argument

type of the associated induce�statement�
�� The variable in a repeat�statement must occur in the pattern of the when�

clause �of the associated induce�statement� that contains the repeat state�
ment�

��� Semantics� We consider only the predicative semantics ��� �� of the ind�
uce�statement� The approach would be similar if a di�erent semantic formalism
were used� e�g�� weakest preconditions or denotational semantics�

In predicative semantics each statement is considered to be a predicate re�
lating the values of variables in the initial and �nal states� We denote the value
of a variable v in the initial state by v and the value of that variable in the �nal
state by �v�

Let when c	v�� v�� � � � � vm
 � S be a clause in an induce�statement with ex�
pression E� It is considered to be the predicate

h�v�� v�� � � � � vm �E � c	v�� v�� � � � � vm
 � Si

provided none of the vi are free in E� A case�statement

case E W� W� � � � Wn end case

is considered to be h�i � 
� �� � � � � n �Wii�
Now the statement induce f	n
 Z end f is considered to be f	n
 where f is

the 	unique
 solution of

f � �p � case p Z end case

That gives the semantics of induce�statements in an untimed model of com�
putation� In a timed model there is a distinguished state variable t representing
the current time� In the recursive time model ��� �� this variable is of type
nat� f�g� and the time variable is used only to count recursive calls� thus pro�
viding an approximation to within a constant factor of the real time� To �nd
the interpretation of induce f	n
 Z end f we �rst construct �Z in which every
repeat�statement S 	refering to f
 in Z is replaced by the sequence t �� t�� S�
The induce�statement is considered to be f	n
 where f is the 	unique
 solution
of

f � �p � case p �Z end case



Foundations of Software Technology � Theoretical Computer Science ���� �

� Extensions

induce hanoi��� from �� �a��
to �� �b��
other �� �c��

when � �
when i� �
hanoi�i� from�other� to�
print �Move from �� from�� to �� to
hanoi�i� other� to� from�

end hanoi

induce traverse tree�T�
when empty �
when node�label� children� �
visit�label�
induce traverse tree list�children�
when nil �
when child�siblings �
traverse tree�child�
traverse tree list�siblings�

end traverse tree list
end traverse tree

Fig� �� �a� �b�

��� Parameters� We can improve the idea by adding a combined parameter
and argument list to the induce�statement and an argument list to the repeat�
statement� For example� the Hanoi program becomes Fig� �	a
� The changes to
the syntax and semantics are straightforward�

��� Mutually Recursive Types� As mentioned above mutual recursion be�
tween nested loops is permitted� However� the context constraints above prevent
some very natural mutual recursions such as this pre�x traversal of an n�ary
tree shown in Fig� �	b
� Notice that the repeat statement traverse tree	child
 vi�
olates a constraint because child was not declared in the current pattern of the
traverse tree induce�statement�

To allow this sort of algorithm the constraint on the variable of the repeat
statement is loosened� A variable v is connected to an induce�statement S i�

� v is in a pattern of S� or
� v is connected to an induce�statementT and the argument for that statement

is a variable connected to S

Context constraint 	�
 on repeat�statements becomes� The variable of each re�
peat�statement must be connected to the induce�statement associated with the
repeat�statement�

��� Functional Programming� A similar construct� the induce�expression�
is possible for functional programming� For example� the following expression
reverses a list� L�

induce reverse	L� accumulator �� nil

when nil � accumulator

when head�tail � reverse	tail� head�accumulator

end reverse

The syntax� context conditions� and semantics are straightforward�



� Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

� Programming Methodology

A re�nement calculus is a triple 	S�P �w
 in which w is a transitive and re�exive
relation on a set of speci�cations S� and P �a set of programs� is a subset of
S� Design and coding from a speci�cation S can be seen as the process of �nding
a program P such that S w P � A re�nement calculus for functional programs is
discussed by Norvell and Hehner ���� and is used here�

Let assert G in P be the same as speci�cation P except that G may be
assumed to be true� That is� any Q that re�nes P in circumstances where G

holds� re�nes assert G in P � For induce statements 	or expressions
 with natural
argument type the following re�nement rule holds for any variable n�

P 	n
 w induce f	n

when 
 � assert n� 
 in P 	n

when m� � assert m� � n � 	P 	m
 w f	m

 in P 	n

end f

The rule is called re�nement by induce� Of course a similar rule holds for each
argument type� Another important rule is that the induce�construct is monotonic
with respect to re�nement� Other re�nement calculi will have corresponding
rules�

We will look at an example of deriving an algorithm to search a binary search
tree� We will use the type tree �	�
 for some linearly ordered type �� We de�ne
predicates � and st

b � empty 	 false 	



b � node	a� u� v
 	 	b� a 
 b � u 
 b � v
 	�


st	empty
 	 true 	�


st	node	a� u� v

 	 st	u
 � st	v

� h�b � � � 	b� a
 � b � u
 � 	b� a
 � b � v
i

	�


The problem to solve is P 	t
 where P 	t
 � assert st	t
 in b � t� That is
we require an expression to say whether an element b is in a search tree t�
The derivation of such an expression is shown in Fig� �� Each box represents
a subderivation� that is a derivation starting with the expression just above it�
In subderivations we can make use of any information provided by the context�
in particular from assertions and if�conditions� The two hints �induction hyp��
refer to the assertions P 	u
 w f	u
 and P 	v
 w f	v
 respectively�

� Proof by Programming

The laws and techniques of re�nement calculi can be turned to an unexpected
and interesting purpose� Take S to be a set of predicates� P to be ftrueg and
interpret S w T by h�� � S � T i 	where � is all free variables of S and T 
 as
is done in predicative programming ��� ��� Then if we can derive S w true� that
derivation is a proof of S� Expressing proof as program derivations leads to a
way of presenting proofs similar to that of Wim Feijen�

Programming constructs such as if�statements and let�statements have in�
terpretations as predicate�constructions and can be used to structure proofs� Of



Foundations of Software Technology � Theoretical Computer Science ���� �

P �t�
w fjre
nement by inducejg
induce search�t�
when empty �

assert t� empty � st�t�
in b � t

w fjfrom ��� and t� emptyjg
false

when node�a� u� v� �
assert st�t� � t� node�a� u� v� � �P �u� w search�u�� � �P �v� w search�v��
in b � t

w fjfrom ���jg
b� a � b � u � b � v

w fj���	 st�node�a� u� v�� and cleaning upjg
b� a � �b � a � b � u� � �b � a � b � v�

w fjre
nement by ifjg
if b � a then b � u

w fjfrom st�node�a� u� v�� and ���jg
assert st�u� in b � u

w fjinduction hyp�jg
search�u�

else if b � a then b � v

w fjfrom st�node�a� u� v�� and ���jg
assert st�u� in b � v

w fjinduction hyp�jg
search�v�

else assert b� a � b� a in b � t

w fjfrom antisymetry a� b	 then ���jg
true

end search
w fjputting it all together and removing assertionsjg
induce search�t�
when empty � false
when node�a� u� v� � if b � a then search�u�

else if b � a then search�v�
else true

end search

Fig� �� A derivation of a search program

course induce�statements are used to express inductive proofs� In addition to
re�nement by induce� we need the following idempotence rule

induce f	n
 when 
 � P when m� � f	m
 w P

Fig� � shows a proof of a simple theorem from number theory�
The advantage of this proof format is that it clearly shows the structure of the

argument and allows it to be presented in a way that can be read at a variety of



� Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

Pn

i��
i� n��n���

�
w fjre
nement by inductionjg
induce f�n�

when � �
P�

i��
i� �������

�

w fjalgebrajg
true

when m� � assert
Pm

i��
i� m��m���

� w f�m�

in
Pm��

i��
i� �m�����m�����

�

w fjalgebrajgPm

i��
i� m��m���

�
w fjinduction hyp�jg
f�m�

end f

w fjfrom the subderivationsjg
induce f�n�
when � � true
when m� � f�m�
end f

w fjidempotencejg
true

Fig� �� Proof of
Pn

i��
i� n��n���

�

levels of detail� Arguments based on transitivity of re�nement and monotonicity
with respect to re�nement can be easily veri�ed visually�

This way of looking at proofs has the slogan �proof by programming�� It
should not be confused with constructive type theory where programs are proofs�
here it is the process of programming �or rather the record of that process�
that is the proof� Proof by programming makes exact the parallel between a
circular argument and a nonterminating program� It is important to the sound�
ness of this process that no nonterminating programs occur in the derivation�
in this application� the boundedness of induce�expressions is of fundamental im�
portance�

� Expressive Power

A total language is a language in which it is possible only to express total func�
tions� or in other words� terminating computations� Total languages are useful
because they support the usual laws of mathematics� For a simple example�
f	n
� 
 is the same as 
� A more advanced example is found in the parametric�
ity theorem� which gives �theorems for free�� and which can not be proved for
languages containing general recursion� for this reason Wadler suggests explo�
ration of practical languages that restrict recursion �� �� The induce�statement
provides a possible basis for total languages�

The most commonly known total language is that of primitive recursive arith�
metic� A classic example of a total computable function that is not primitive
recursive is due to P�eter 	usually called Ackermann�s function
 ���� ��� on the



Foundations of Software Technology � Theoretical Computer Science ���� �

left�
p	�� n
 � n�

p	m�� �
 � p	m� �

p	m�� n�
 � p	m� p	m�� n



induce p	m� n �� n

when � � n�

when m� � induce q	n

when � � p	m� �

when n� � p	m� q	n


end q

end p

Yet the expression on the right computes Ackermann�s function at 	m� n
� On
the other hand� a simple diagonalization argument shows that no total language
can express all total computable functions�

Next we look at the exact expressive power for a �rst�order version and for
an unrestricted version of a language based in induce�expressions�

��� First�order subset� The �rst�order subset is called FOI� its syntax is
presented in Fig� �� It has only natural variables� zero� successor� function calls
	including repeat�expressions
� nonrecursive function de�nition� and induce ex�
pressions� The context conditions given in sections ��� and ��� are in e�ect� Any
expression in FOI� with free variables of type nat only� de�nes a function from
tuples of naturals to naturals� Any function that can be expressed in this lan�
guage is called FO inductive� Any function expressible in this language using
induce�expressions nested at most k deep is said to be k FO inductive�

Types for FOI and I�
T � nat j T � 	 	 	 � T j T � T

The language FOI �
E � Vnat j � j E

�

j Vnat�����nat�nat�E� � � � � E�
j let Vnat�����nat�nat

�Vnat� � � � � Vnat� �E in E

j induce Vnat�nat�����nat�nat
�E� Vnat �� E� � � � � Vnat �� E�

when � � E
when Vnat

� � E
end Vnat�nat�����nat�nat

The language I �
Enat � � j Enat

�

E������� � �E�� � � � � E��
E��������� � �V�� � � � � V� 	E�

E�� V� j E��� E�

j induce Vnat����������

�Enat� V� �� E�� � � � � V� �� E��
when � � E�

when Vnat
� � E�

end Vnat����������

With �	 �	 and 	 ranging over all types� Any nonterminal V� represents identi
ers
of type ��

Fig� �� The languages FOI and I�

The �rst�order language is of particular importance because it corresponds
most closely to imperative languages� Even in the realm of functional languages�
the expressiveness of the �rst�order subset is important as the excessive use of
higher�order functions can lead to unclear programs as surely as their excessive
nonuse�

For k � nat� a k�fold recursive de�nition is a function de�nition with the
following restriction� Calls to previously de�ned functions are allowed� but calls



�� Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

to the function being de�ned are allowed only if one of the �rst k parameters
is reduced by �� and all the parameters to the left of that one are unchanged
���� ���� k�fold recursive de�nition can not be a source of nontotality as each
recursive call comes closer 	in lexicographic order
 to the base case� A k�fold

recursive function is one that can be de�ned using k�fold recursive de�nition
starting with zero and the successor function as basis constants�

Any ��recursive function is primitive recursive and vice versa� Ackermann�s
function is an example of a ��fold recursive function�

Theorem �� Any k�fold recursive function is k FO inductive�

Theorem �� Any function which is k FO inductive is 	�k � �
�fold recursive�

Both these theorems can be proved by presenting and proving a translation from
one form of de�nition to the other�

The set of all functions that are k�fold recursive for some k� is called the
multiply recursive functions� And so FOI expresses exactly the multiply recur�
sive functions� P�eter ���� gives two other characterizations to this same class
of functions� those functions expressible with trans�nite recursion of type �k

for some natural k� or� those functions expressible using primitive recursion on
second order functions�

��� The full language� We extend FOI by allowing typed lambda expres�
sions with functional argument and result types� We also allow induce�expressions
to be of functional type� Let�expressions are dropped as they can be simulated
with lambda�� This new language we call I� it is shown in Fig� �� A function
from a tuple of naturals to the naturals expressible in I is said to be inductive�

G!odel�s system T is a language just like I except that it does not have induce�
expressions� and it does have a combinator R� for each type ��

E�����nat����nat�� � R�

with the properties

R�	a� f� 

 � a

R�	a� f� n
�
 � f	R�	a� f� n
� n


Terms of T are easily translated to terms of I� Each occurrence of R is just
replaced by a simple induce�expression� Translating terms of I to terms of T
is only slightly harder� First any induce�expression with a parameter"argument
list can be replaced by an application of an induce�expression without a param�
eter"argument list� Second any induce expression

induce f	n

when 
 � G
whenm� � F �m� f	m
�
end f

can be translated to R	G� 	�fm�m � F �m� fm�
� n
 where fm is a new name�

� In fact let�expressions can also be simulated by induce�expressions and hence were
not needed in FOI� They were included there so that unnecessary nesting of induce
expressions may be avoided�



Foundations of Software Technology � Theoretical Computer Science ���� ��

Theorem �� The functions expressible in T are the functions expressible in I�

Here are two other characterizations of the same class of functions� those
functions that can be proven total using Peano arithmetic ���� or the union of
all Grzegorczyk classes En for ordinal n � �� �����

� Other Work

A similar expression form has been conceived independently by Burstall ��� ��
as an extension to ML� His proposal di�ers from the one presented here in three
respects�


� It applies only to functional languages�

�� the counterparts of induce expressions are not named and so mutual recur�
sion is not easily expressed�

�� It does not have the equivalent of our parameters�

Parameters can be simulated with higher�order functions� but this is not an op�
tion in imperative languages� Likewise mutual recursion of the sort illustrated
by the P�eter function or the phone number example can only be expressed using
higher�order functions� Burstall does give an extension of his notation that can
handle the mutual recursion of the n�ary tree example without higher�order pro�
gramming� In that case the two sorts of repeat�statements can be distinguished
by the type of the argument� Distinguishing them by name is more general and
permits better type checking�

Malton ��
� annotates every loop with an integer expression denoting the
maximum number of times it can iterate� This allows expression of exactly the
�rst�order functions expressible in system T � The charity language based is on
two varieties of data types� �initial� types� whose values are �nite� and ��nal�
types� whose values are in�nite ���� Values of the �nal types are constructed lazily
and can not provide a source of nontermination� for example� there is no way to
write a function to return the last element of an in�nite list because there is no
empty list of the right type and hence no way to express the concept of �the last
element�� The control structures based on initial types are similar to primitive
recursion� Meertens proposes a programming construct called �paramorphism�
����� similar to G!odel�s R combinator� The Girard"Reynolds calculus has been
proposed as a programming language �
�� Data can be represented using Church
encodings and hence serve as control structures themselves� The expressive power
of the Girard"Reynolds calculus exceeds system T � Type theory has also been
proposed as a programming language ����� The expressive power of some type
theories exceed even the Girard"Reynolds calculus�

Acknowledgements Thanks are due to Ray Blaak� Rod Burstall� Ian Hayes� Ric
Hehner� and Natarajan Shankar for discussions and comments on earlier versions
of this paper�



�
 Induce�Statements and Induce�Expressions� Constructs for Inductive Programming

References

�� Val Breazu�Tannen and Albert R� Meyer� Computable values can be classical�
In Fourteenth ACM Symposium on Principles of Programming Languages	 pages

���
��	 �����

�� R�M� Burstall� Proving properties of programs by structural induction� The Com�
puter Journal	 �
������	 �����


� R�M� Burstall� Inductively de
ned functions� In Mathematical Foundations of

Software Development	 pages �
���� Number ��� in Lecture Notes in Computer
Science	 Springer Verlag	 �����

�� R�M� Burstall� Inductively de
ned functions in functional programming languages�
Journal of Computer and System Sciences	 ��������
�	 �����

�� Robin Cockett and Tom Fukushima� About CHARITY� Unpublished draft	 ���
�
�� Jean�Yves Girard� Proof Theory and Logical Complexity� Vol� �� Number � in

Studies in Proof Theory� Bibliopolis	 �����
�� Eric C�R� Hehner� A practical theory of programming� Science of Computer Pro�

gramming	 ����������	 �����
�� Eric C�R� Hehner� A Practical Theory of Programming� Springer�Verlag	 �����
�� C�A�R� Hoare� Recursive data types� International Journal of Computer and

Information Science	 ��������
	 �����
�� Richard C� Holt	 Philip A� Matthews	 J� Allan Rosselet	 and James R� Cordy� The

Turing Programming Language� Design and De�nition� Prentice Hall	 �����
��� Andrew Malton� Functional Interpretation of Programming Methods� PhD thesis	

University of Toronto	 �����
��� Robert Mandl� On �PowerLoop� constructs in programming languages� SIGPLAN

Notices	 
���������
	 �����
�
� John McCarthy� Recursive functions of symbolic expressions and their computa�

tion by machine	 part �� Communications of the ACM	 ������������	 �����
��� Lambert Meertens� Paramorphisms� Formal Aspects of Computing	 ����������
�	

���
�
��� Bengt Nordstr�om	 Kent Petersson	 and Jan Smith� Programming in Martin�L�of	s

Type Theory� Clarendon Press	 �����
��� Theodore S� Norvell and Eric C�R� Hehner� Logical speci
cations for functional

programs� In R�S� Bird	 C�C� Morgan	 and J�C�P� Woodcock	 editors	Mathematics

of Program Construction	 number ��� in LNCS	 pages 
���
��� Springer Verlag	
�����

��� R�osa P�eter� Konstruktion nichtrekursiver Funktionen� Mathematishe Annalen	
�����
���	 �����

��� R�osa P�eter� Recursive Functions� Academic Press	 �����
��� H� E� Rose� Subrecursion� Functions and Hierarchies� Number � in Oxford Logic

Guides� Clarendon Press	 �����
��� Philip Wadler� Theorems for free� In The Fourth International Conference on

Functional Programming Languages and Computer Architecture� ACM Press	 �����

This article was processed using the LaTEX macro package with LLNCS style


