Induce-Statements and Induce-Expressions:
Constructs for Inductive Programming

Theodore S. Norvell

Department of Computer Science
University of Toronto
norvell@cs.toronto.edu

Abstract. A for-loop is somewhat similar to an inductive argument.
Just as the truth of a proposition P(n 4+ 1) depends on the truth of
P(n), the correctness of iteration n+ 1 of a for-loop depends on iteration
n having been completed correctly.

This paper presents the induce-construct, a new programming construct
based on the form of inductive arguments. It is more expressive than
the for-loop yet less expressive than the while-loop. Like the for-loop, it
is always terminating. Unlike the for-loop, it allows the convenient and
concise expression of many algorithms. The for-loop traverses a set of
consecutive natural numbers, the induce-construct generalizes to other
data types.

The induce-construct is presented in two forms, one for imperative lan-
guages and one for functional langnages. The expressive power of lan-
guages in which this is the only recursion construct is greater than prim-
itive recursion, namely it is the multiply recursive functions in the first
order case and the set of functions expressible in Godel’s system T in
the general case.

0 Data Types

We consider languages in which some of the data types are defined by recursion
as in Hoare’s ‘Recursive Data Types’ [8] or the language ML. The example in
this paper use the following (polymorphic) types.

tree_2(

«) = empty | node(a, tree_2(«a), tree_2(a))
list(o) = nil | av.list(c)
a)

tree_n(«) = empty | node(«, list(tree_n(a:)))

!
natural = 0 | natural

(with the usual abbreviations 1=0",2=1'=0",...). Files may be considered as
lists of characters, or as lists of lines, each line being a list of characters.

The members of a data type are all the values that can be finitely generated
from its constructors. It is not possible to generate the same member in more
than one way.

A programming methodology for functional programming with such recursive
data types is presented by Burstall [1] which is largely the inspiration for the
present paper. The main progress that this paper makes over that one, is to
present an inductive programming construct to match the inductive data types
and to extend the ideas into the realm of imperative programming.

2 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

1 Informal Description and Examples

sum:=0 proc f(j : nat) inducef(n)
fori:0.n—1 ifj=0 when 0 : sum:=0
sum := A(i) + sum thensum:=0 when i’ : f(i)
A(i) := sum elseconsti:=j—1 sum := A(i) + sum
end for f(i) A(i) ;= sum
sum := A(i) + sum end f
A(i) := sum
end if
end f
f(n)
Fig.0. (a) (b) (c)

1.0 An example. Consider the statementin Fig. 0(a). Using a procedure def-
inition this algorithm might be written as in Fig. 0(b). In this second form the
inductive structure is clearer, though somewhat buried in clutter, most of which
accompanies the parameter j. The then-part of the if-statement represents the
base case, while the else-part represents the induction step. In this particular
case a for-loop can be used just as well, but in general, one may want an al-
gorithm where the recursive call occurs elsewhere or where there are multiple
recursive calls.

To provide a structured way to write such statements, we introduce two
new statement forms, the induce-statement and the repeat-statement. Before
describing their syntax and semantics precisely, we give some examples. The for-
loop above can be rewritten as the induce-statement in Fig. 0(c).” This works
as follows. Assume that the value of n is 1. The value 1 (= 0') is matched
against each of two patterns 0 and i’. Tt matches the second pattern, the pattern
variable i (which is local to the statement sequence that follows) is instantiated
to the value 0, and the three-statement sequence following the second pattern is
commenced. The first statement, f(i), is an example of a repeat-statement. Its
execution causes the entire process to repeat except with the value of i (which
is 0) rather than the value of n. This time the first pattern matches, so sum
is initialized to 0. The repeat-statement, f(i), is now complete so the following
two statements are executed and after that the entire induce-statement is then
complete.

The induce-statement can be seen as both declaring and calling a local pro-
cedure and the repeat-statement as recursively calling this procedure. In this
respect the induce-statement is similar to the “label” special form of some LISP
dialects [12].

1.1 The Restriction guaranteeing termination. There is an important
restriction on induce-statements, the purpose of which is to guarantee that they

© The particular syntax used in this presentation is intended to be consistent in spirit
with Euclid and its progeny [9].

Foundations of Software Technology & Theoretical Computer Science 1993 3

can not be the source of nontermination: The argument of a repeat-statement
must be one of the variables in the pattern that guards it.

induce in_order_traversal(T) const Letter := init(“000”, “111”, “abc”, “def”,
when empty : “ghi”, “IkI", “mno”, “prs”,
when node(label, left, right) : “tuv”, “wxy")
in_order _traversal(left) var Word : array 0..6 of character
visit(label) induce columns(7)
in_order _traversal(right) when 0 : print Word
end in_order _traversal when d’ : induce letters(3)
when O :
when i : Word(d) := Letter(Phone(d), i)
columns(d)
letters(i)
end letters
end columns

Fig. 1. (a) (b)

1.2 Some More examples. The previous example showed the induce-state-
ment only as a poor alternative to the for-statement. But the repeat-statement
need not occur at the beginning of the statement sequence following its pattern.
By placing it at the end we obtain a “count-down” for-loop. By placing it in
the middle we can express algorithms that would otherwise require a recursive
procedure. Further, there can be more than one repeat-statement after a pattern.
The idea generalizes easily to any directly recursive data type. These last two
points are illustrated by Fig. 1(a).

Induce-statements may be nested, of course. In some cases it may be desirable
to repeat an outer loop from within an inner loop. This gives rise to mutual
recursion. For example, Fig. 1(b) is a “power loop” [11] that prints all seven letter
words that, on a North American phone, correspond to a seven-digit telephone
number stored in an array Phone.

2 More Formal Description

2.0 Syntax. Here is the syntax used for induce-statements in this paper

Statement — induce Name(Arg) Pattern — constructor
Clauses end Name | constructor(VarList)
| Name(Variable) | Variable'
| Statement Statement | Variable. Variable
| ete. VarList — Variable
Clauses — when Pattern : Statement | VarList, VarList
| Clauses Clauses Name — identifier

Variable — identifier
Arg — Ezxpression

4 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

2.1 Context constraints. First, two definitions that will be used in the con-
text constraints (rules of static semantics).
— The argument type of an induce-statement is the type of its argument.
— A repeat-statementis associated with the smallest enclosing induce-statement
with the same identifier.

The following context counstraints apply:

0. The patterns in the when-clauses of an induce-statement must correspond
one-to-one with the cases of the type definition for the argument type of the
induce-statement.

1. The variables in the pattern are local to the following statement and may

not be assigned. The type of each a variable can be inferred from its position

within the variable list, and from the constructor.

Every repeat-statement must have an associated induce-statement.

3. The variable in a repeat-statement must be of the same type as the argument
type of the associated induce-statement.

4. The variable in a repeat-statement must occur in the pattern of the when-
clause —of the associated induce-statement— that contains the repeat state-
ment.

o

2.2 Semantics. We consider only the predicative semantics [6, 7] of the ind-
uce-statement. The approach would be similar if a different semantic formalism
were used, e.g., weakest preconditions or denotational semantics.

In predicative semantics each statement is considered to be a predicate re-
lating the values of variables in the initial and final states. We denote the value
of a variable v in the initial state by v and the value of that variable in the final
state by .

Let when 0(1:“, Vi,...,Um) ¢ S be a clause in an induce-statement with ex-
pression E. It is considered to be the predicate

(Fuo, v1y .oy - E=clvg,v1,...,um) A S)
provided none of the v; are free in F. A case-statement
case F W, W; ... W,endcase

is cousidered to be (37 :0,1,...,n- W;).
Now the statement induce f(n) Z end f is considered to be f(n) where f is
the (unique) solution of

f=Ap-casep Z end case

That gives the semantics of induce-statements in an untimed model of com-
putation. In a timed model there is a distinguished state variable ¢ representing
the current time. In the recursive time model [6, 7] this variable is of type
nat U {oo}, and the time variable is used only to count recursive calls, thus pro-
viding an approximation to within a constant factor of the real time. To find
the interpretation of induce f(n) Z end f we first construct Z in which every
repeat-statement S (refering to f) in Z is replaced by the sequence ¢t :=t+1 S.
The induce-statement is considered to be f(n) where f is the (unique) solution

of R
f=Ap-casep Z end case

ot

Foundations of Software Technology & Theoretical Computer Science 1993

3 Extensions

induce hanoi(7, from := “a", induce traverse_tree(T)
to := “b", when empty :
other := “c") when node(label, children) :
when 0 : visit(label)
wheni : induce traverse_tree_list(children)
hanoi(i, from, other, to) when nil :
print “Move from " from,“ to ", to when child.siblings :
hanoi(i, other, to, from) traverse_tree(child)
end hanoi traverse_tree_list(siblings)
end traverse_tree_list
end traverse_tree

Fig. 2. (a) (b)

3.0 Parameters. We can improve the idea by adding a combined parameter
and argument list to the induce-statement and an argument list to the repeat-
statement. For example, the Hanoi program becomes Fig. 2(a). The changes to
the syntax and semantics are straightforward.

3.1 Mutually Recursive Types. As mentioned above mutual recursion be-
tween nested loops is permitted. However, the context constraints above prevent
some very natural mutual recursions such as this prefix traversal of an n-ary
tree shown in Fig. 2(b). Notice that the repeat statement traverse_tree(child) vi-
olates a constraint because child was not declared in the current pattern of the
traverse_tree induce-statement.

To allow this sort of algorithm the constraint on the variable of the repeat
statement is loosened. A variable v is connected to an induce-statement S iff

— v is in a pattern of S, or
— v is connected to an induce-statement 7" and the argument for that statement
is a variable connected to S

Context constraint (4) on repeat-statements becomes: The variable of each re-
peat-statement must be connected to the induce-statement associated with the
repeat-statement.

3.2 Functional Programming. A similar construct, the induce-expression,
is possible for functional programming. For example, the following expression
reverses a list, L:

induce reverse(L, accumulator := nil)

when nil : accumulator

when head.tail : reverse(tail, head.accumulator)
end reverse

The syntax, context conditions, and semantics are straightforward.

6 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

4 Programming Methodology

A refinement calculus is a triple (S, P, J) in which J is a transitive and reflexive
relation on a set of specifications S, and P —a set of programs— is a subset of
S. Design and coding from a specification S can be seen as the process of finding
a program P such that S J P. A refinement calculus for functional programs is
discussed by Norvell and Hehner [15] and is used here.

Let assert G in P be the same as specification P except that G may be
assumed to be true. That is, any () that refines P in circumstances where G
holds, refines assert G in P. For induce statements (or expressions) with natural
argument type the following refinement rule holds for any variable n.

P(n) Jinduce f(n)
when 0 : assert n =0in P(n)
when m' : assert m’ =n A (P(m) 2 f(m)) in P(n)
end f

The rule is called refinement by induce. Of course a similar rule holds for each
argument type. Anotherimportant rule is that the induce-construct is monotonic
with respect to refinement. Other refinement calculi will have corresponding
rules.

We will look at an example of deriving an algorithm to search a binary search
tree. We will use the type tree_2(a) for some linearly ordered type . We define
predicates € and st

—~
o

— e S~

b € empty = false
b € node(a,u,v) = (b=aVbeuVbew)
st(empty) = true

st(node(a,u,v)) = st(u) A st(v)
ANVb:a-(b>a=-beu)A(b<a=-bev))

NN N
N

The problem to solve is P(¢) where P(t) = assert st(t) in b € t. That is
we require an expression to say whether an element b is in a search tree f.
The derivation of such an expression is shown in Fig. 3. Each box represents
a subderivation, that is a derivation starting with the expression just above it.
In subderivations we can make use of any information provided by the context,
in particular from assertions and if-conditions. The two hints “induction hyp.”
refer to the assertions P(u) J f(u) and P(v) J f(v) respectively.

5 Proof by Programming

The laws and techniques of refinement calculi can be turned to an unexpected
and interesting purpose. Take S to be a set of predicates, P to be {true} and
interpret S 3 T by (Vo - S < T) (where ¢ is all free variables of § and T') as
is done in predicative programming [6, 7]. Then if we can derive S 0 true, that
derivation is a proof of S. Expressing proof as program derivations leads to a
way of presenting proofs similar to that of Wim Feijen.

Programming constructs such as if-statements and let-statements have in-
terpretations as predicate-constructions and can be used to structure proofs. Of

Foundations of Software Technology & Theoretical Computer Science 1993

P(t)

3 {refinement by induce[}
induce search(t)
when empty :

assert t = empty A st(t)
inbet

3 {from (0) and t = empty]}
false

when node(a, u,v) :

assert st(t) A t = node(a, u, v) A (P(u) O search(u)) A (P(v) O search(v))

inbet

3 {from (1)[}
b=avbeuvbev

3 {(3), st(node(a, u, v)) and cleaning upl}
b=aV(b<anbeu)V(b>aAbecv)

3 {refinement by iff}
ifb<athen beu

3 {from st(node(a,u, v)) and (3)[}
assert st(u) inb € u

3 {induction hyp.[}
search(u)

elseif b>athen be v

3 {from st(node(a,u, v)) and (3)[}
assert st(u) inb €

3 {induction hyp.[}
search(v)

else assert b>aAnb<ainbet

3 {from antisymetry a = b, then (1)}
true

end search
3 {putting it all together and removing assertionsf}
induce search(t)
when empty : false
when node(a, u, v) : if b < a then search(u)
elseif b > a then search(v)

else true
end search

Fig. 3. A derivation of a search program

course induce-statements are used to express inductive proofs. In addition to
refinement by induce, we need the following tdempotence rule

induce f(n) when 0: P whenm': f(m) 1 P
Fig. 4 shows a proof of a simple theorem from number theory.

The advantage of this proof format is that it clearly shows the structure of the
argument and allows it to be presented in a way that can be read at a variety of

8 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

i
3 {refinement by inductionf}
induce f(n)

when 0 : Z?zl i = WO+

2
1 {algebral}
true
when m' : assert Y .- i= Mw 3 f(m)
in Z:’:l i = LW_H%MZ
3 {algebral}
m — mxX{(m+1

=1 2
3 {induction hyp.[}

f(m)

end f
3 {from the subderivations[}
induce f(n)
when 0 : true
when m' : f(m)
end f
1 {idempotencel[}
true

Fig. 4. Proof of 22‘;1 i= M;il

levels of detail. Arguments based on transitivity of refinement and monotonicity
with respect to refinement can be easily verified visually.

This way of looking at proofs has the slogan “proof by programming”. It
should not be confused with constructive type theory where programs are proofs;
here it is the process of programming —or rather the record of that process—
that is the proof. Proof by programming makes exact the parallel between a
circular argument and a nonterminating program. It is important to the sound-
ness of this process that no nonterminating programs occur in the derivation;
in this application, the boundedness of induce-expressions is of fundamental im-
portance.

6 Expressive Power

A total language is a language in which it is possible only to express total func-
tions, or in other words, terminating computations. Total languages are useful
because they support the usual laws of mathematics. For a simple example:
f(n) x 0 1is the same as 0. A more advanced example is found in the parametric-
ity theorem, which gives “theorems for free,” and which can not be proved for
languages containing general recursion; for this reason Wadler suggests explo-
ration of practical languages that restrict recursion [19]. The induce-statement
provides a possible basis for total languages.

The most commonly known total language is that of primitive recursive arith-
metic. A classic example of a total computable function that is not primitive
recursive is due to Péter (usually called Ackermann’s function) [16, 17] on the

Foundations of Software Technology & Theoretical Computer Science 1993 9

left.
p(0.n) =n’ induce p(m,n:=n)
p(m’,0) = p(m,1) when 0: n’
p(m’,n’) = p(m,p(m’,n)) when m' : induce q(n)

when 0 : p(m,1)
when n’ : p(m,q(n))
end q

end p

Yet the expression on the right computes Ackermann’s function at (m,n). On
the other hand, a simple diagonalization argument shows that no total language
can express all total computable functions.

Next we look at the exact expressive power for a first-order version and for
an unrestricted version of a language based in induce-expressions.

6.0 First-order subset. The first-order subset is called FOI; its syntax is
presented in Fig. 5. It has only natural variables, zero, successor, function calls
(including repeat-expressions), nonrecursive function definition, and induce ex-
pressions. The context conditions given in sections 2.1 and 3.1 are in effect. Any
expression in FOI, with free variables of type nat only, defines a function from
tuples of naturals to naturals. Any function that can be expressed in this lan-
guage is called FO wnductive. Any function expressible in this language using
induce-expressions nested at most k deep is said to be k FO wnductive.

Types for FOI and I:
T—nat|Tx--xT|T—T

The language FOI : The language I :
E — V:nat 0] E Enat — 0| Enat’ ;
Vhatx..xnat—nat(E. ..., E) Eax..xp — (Ea, e Ep)]
| let L’nat><---xnatﬁnat Eoxsxpory = AVa,..., Vs - Ey
(Vnat-nn-,vnat):EinE Eo— Va | E/B—”l E/B
| induce Vnatynatx... <nat—nat | induce "’rn’atx,ax---xwﬁa .
(E,Vhat := E,....Vhat .= E) (Enats Vs :=Eg,....Vy = Ey)
whenO: E when0: E,
when Vjyat' ' E when V' 1 Ea
end Vhatynatx..- xnat—nat end Vnat><;3><~~~><w—»a

With «, 3, and v ranging over all types. Any nonterminal V,, represents identifiers
of type a.

Fig. 5. The languages FOI and I.

The first-order language is of particular importance hecause it corresponds
most closely to imperative languages. Even in the realm of functional languages,
the expressiveness of the first-order subset is important as the excessive use of
higher-order functions can lead to unclear programs as surely as their excessive
nonuse.

For %k : nat, a k-fold recursive definition is a function definition with the
following restriction. Calls to previously defined functions are allowed, but calls

10 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

to the function being defined are allowed ounly if one of the first & parameters
is reduced by 1, and all the parameters to the left of that one are unchanged
[16, 17]. k-fold recursive definition can not be a source of nontotality as each
recursive call comes closer (in lexicographic order) to the base case. A k-fold
recurswe function is one that can be defined using k-fold recursive definition
starting with zero and the successor function as basis constants.

Any 1-recursive function is primitive recursive and vice versa. Ackermann’s
function is an example of a 2-fold recursive function,

Theorem 1. Any k-fold recursive function s k FO inductive.
Theorem 2. Any function which is k FO inductive is (2k — 1)-fold recursive.

Both these theorems can be proved by presenting and proving a translation from
one form of definition to the other.

The set of all functions that are k-fold recursive for some k, is called the
multiply recursive functions. And so F'OI expresses exactly the multiply recur-
sive functions. Péter [17] gives two other characterizations to this same class
of functions: those functions expressible with transfinite recursion of type w*
for some natural k; or, those functions expressible using primitive recursion on
second order functions.

6.1 The full language. We extend FOI by allowing typed lambda expres-
sions with functional argument and result types. We also allow induce-expressions
to be of functional type. Let-expressions are dropped as they can be simulated
with lambda.! This new language we call I; it is shown in Fig. 5. A function
from a tuple of naturals to the naturals expressible in [is said to be inductive.

Godel’s system T is a language just like I except that it does not have induce-
expressions, and it does have a combinator R, for each type «,

Eax(axnatﬂ(y)xnatﬂcy — R,
with the properties
Ry(a,f,0)=a
R.(a, f,n") = f(Ra(a, f,n),n)

Terms of T are easily translated to terms of I. Each occurrence of I is just
replaced by a simple induce-expression. Translating terms of I to terms of T
is only slightly harder. First any induce-expression with a parameter/argument
list can be replaced by an application of an induce-expression without a param-
eter/argument list. Second any induce expression

induce f(n)

when 0: G
when m' : F[m, f(m)]
end f

can be translated to R(G. (Afm,m - F[m, fm]),n) where fm is a new name.

! In fact let-expressions can also be simulated by induce-expressions and hence were
not needed in FOI. They were included there so that unnecessary nesting of induce
expressions may be avoided.

Foundations of Software Technology & Theoretical Computer Science 1993 11

Theorem 3. The functions expressible in T are the functions expressible in I.

Here are two other characterizations of the same class of functions: those
functions that can be proven total using Peano arithmetic [5]; or the union of
all Grzegorczyk classes £” for ordinal n < ¢ [18].

7 Other Work

A similar expression form has been conceived independently by Burstall [2, 3]
as an extension to ML. His proposal differs from the one presented here in three
respects:

0. It applies only to functional languages.

1. the counterparts of induce expressions are not named and so mutual recur-
sion is not easily expressed.

2. Tt does not have the equivalent of our parameters.

Parameters can be simulated with higher-order functions, but this is not an op-
tion in imperative languages. Likewise mutual recursion of the sort illustrated
by the Péter function or the phone number example can only be expressed using
higher-order functions. Burstall does give an extension of his notation that can
handle the mutual recursion of the n-ary tree example without higher-order pro-
gramming. In that case the two sorts of repeat-statements can be distinguished
by the type of the argument. Distinguishing them by name is more general and
permits better type checking.

Malton [10] annotates every loop with an integer expression denoting the
maximum number of times it can iterate. This allows expression of exactly the
first-order functions expressible in system 7. The charity language based is on
two varieties of data types: “initial” types, whose values are finite, and “final”
types, whose values are infinite [4]. Values of the final types are constructed lazily
and can not provide a source of nontermination; for example, there is no way to
write a function to return the last element of an infinite list because there is no
empty list of the right type and hence no way to express the concept of “the last
element”. The control structures based on initial types are similar to primitive
recursion. Meertens proposes a programming construct called “paramorphism”
[13], similar to Gédel’s R combinator. The Girard/Reynolds caleulus has been
proposed as a programming language [0]. Data can be represented using Church
encodings and hence serve as control structures themselves. The expressive power
of the Girard/Reynolds calculus exceeds system T. Type theory has also been
proposed as a programming language [14]. The expressive power of some type
theories exceed even the Girard/Reynolds calculus.

Acknowledgements Thanks are due to Ray Blaak, Rod Burstall, Ian Hayes, Ric
Hehner, and Natarajan Shankar for discussions and comments on earlier versions
of this paper.

12 Induce-Statements and Induce-Expressions: Constructs for Inductive Programming

References

0.

Val Breazu-Tannen and Albert R. Meyer. Computable values can be classical.
In Fourteenth ACM Symposium on Principles of Programming Languages, pages
238 243, 1987.

R.M. Burstall. Proving properties of programs by structural induction. The Com-
puter Journal, 12:41-48, 1969.

R.M. Burstall. Inductively defined functions. In Mathematical Foundations of
Software Development, pages 92-96. Number 185 in Lecture Notes in Computer
Science, Springer Verlag, 1985.

R.M. Burstall. Inductively defined functions in functional programming languages.
Journal of Computer and System Sciences, 34:409-421, 1987.

4. Robin Cockett and Tom Fukushima. About CHARITY. Unpublished draft, 1992.

(24

=

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Jean-Yves Girard. Proof Theory and Logical Complexity, Vol. 1. Number 1 in
Studies in Proof Theory. Bibliopolis, 1987.

Eric C.R. Hehner. A practical theory of programming. Science of Computer Pro-
grammeng, 14:133-158, 1990.

Eric C.R. Hehner. A Practical Theory of Programming. Springer-Verlag, 1993.
C.A.R. Hoare. Recursive data types. International Journal of Computer and
Information Science, 4:105-132, 1975.

Richard C. Holt, Philip A. Matthews, J. Allan Rosselet, and James R. Cordy. The
Turing Programming Language: Design and Definition. Prentice Hall, 1988.
Andrew Malton. Functional Interpretation of Programming Methods. PhD thesis,
University of Toronto, 1990.

Robert Mandl. On “PowerLoop” constructs in programming languages. SIGPLAN
Notices, 25(4):73-82, 1990.

John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part 1. Communications of the ACM, 3(4):184-195, 1963.
Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413 424,
1992.

Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in Martin-Lof’s
Type Theory. Clarendon Press, 1990.

Theodore S. Norvell and Eric C.R. Hehner. Logical specifications for functional
programs. In R.S. Bird, C.C. Morgan, and J.C.P. Woodcock, editors, Mathematics
of Program Construction, number 669 in LNCS, pages 269-290. Springer Verlag,
1993.

Résa Péter. Konstruktion nichtrekursiver Funktionen. Mathematishe Annalen,
111:42-60, 1935.

Roésa Péter. Recursive Functions. Academic Press, 1967.

H. E. Rose. Subrecursion: Functions and Hierarchies. Number 9 in Oxford Logic
Guides. Clarendon Press, 1984.

Philip Wadler. Theorems for free! In The Fourth International Conference on
Functional Programming Languages and Computer Architecture. ACM Press, 1989.

This article was processed using the IATRX macro package with LLNCS style

