
Translating SMALL
Programs to FPGA
ConÞgurations

Ying Shen & Theodore S. Norvell
Memorial University of

Newfoundland
NECEC 1999

1

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

SMALL
SMALL is ...

� An imperative programming language
� Synchronous and parallel
� A low level language � compared to C
� A high level language � compared to VHDL
� Intended for hardware design

The SMALL implementation

� From program to hardware at a keypress.
� Short design cycles
� Reasonable efÞciency
� Thesis:
∗ hardware is becoming very cheap
∗ hardware is programmed more than manufactured
∗ programmed hardware is getting faster faster
Design costs will dominate.

2

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

The elements of SMALL
Types and Expressions

� Booleans � Logic expressions
� N-Dimensional Arrays�Arithmetic &APLish expressions

Entities

� Registers � Record values
� Signals � Transfer values to parallel statements.

Statements
Assign Register: r← Exp
Assert Signal: s ! Exp
Wait for clock: tick

Parallel composition: par S k T k U rap
Sequential composition: S T U

Choice: if Exp thenS elseT Þ
Loops: whileExpdoS od
Loops: repeatS untilExp

3

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Timing semantics
Time passes only

� at tick statements
� after loop iterations
� for parallel process waiting for another to terminate.

s ! 10 as 4 bits
t ! s− u

is identical to
t ! s− u
s ! 10 as 4 bits

But

s ! 10 as 4 bits
tick

t ! s− u
is NOT identical to

t ! s− u
tick

s ! 10 as 4 bits

4

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Implementations
� Simulator � for debugging of designs
� Compiler � for hardware implementation

Implementation block diagram

And-gates
Or-gates
Not-gates
XOR-gates
D-Flip-flops

Front End
(Lexing,
Parsing,

Checking,
PASM chart
generation)

Text of
SMALL
program

Simulator

PASM
Chart

Simulation
Results

NetList
Generator
(Register

generation,
Signal

generation,
Node generation,

Connection)

PASM Chart

VHDL
Generation

Existing tools
to generate FPGA

configurations.

Low-level
Structural
VHDL

Net list

FPGA

5

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Parallel Algorithmic State Machine Charts
(PASM Charts)
A state-machine representation for control ßow.

Example SMALL program

global sig in : bool

global sig out : bool

reg r : bool
par

while true
do r ← in
od

k
while true
do if r

then out ! in
Þ

od
rap

6

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Example PASM Chart

r <- in
r

out ! in

True
False

Condition nodesAction nodes

State Nodes

start

The state is represented by a set of active state-nodes.
Nodes reachable from an active state-node are executed.
Then all state nodes reachable from an active state-node
become active.

7

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Translation of signals and asserts

s ! FS ! E

go0 go1 done1

s

done0

0 1

sig s : bool

E F

8

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Registers and assignments

r <- Fr <- E

go2 done3done2

2 3

FE

D

r

r

change
r

reg s : bool

1 0

go3

9

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Dealing with Control State

r <- in

out ! in

r

D

D

go

done

done

go

+

D

1 0

10

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Optimization
� Dead device and wire elimination
∗ Deadwood is removed

� Constant folding and propagation
∗ Ground and power inputs eliminated

� Common subcircuit elimination
∗ Two devices with the same inputs

� PASM chart level � not yet done
∗ Sharing of nodes and expressions

11

Translating SMALL Programs to FPGA ConÞgurations Ying Shen & Theodore S. Norvell

Future Directions
� Language improvements
∗ Asynchronous communication.
∗ Module system and separate compilation
∗ Higher level types
∗ User deÞned types

� Compiler improvements
∗ Speed and Space
∗ More optimization � resource sharing.

� Industry involvement

12

