
1

Formal Derivation of Dynamic Programming
Algorithms

Leila Mofarah-Fathi and Theodore S. Norvell
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University

{mofarah, theo}@engr.mun.ca

Abstract—Dynamic programming is a recursive approach to
solving optimization problems. It works by finding solutions to
subproblems and combining those solutions. By storing solutions
to solved problems, dynamic programming can be particularly
efficient.

In this paper we will discuss an approach to solving optimiza-
tion problems based on specialization of an abstract dynamic
programming algorithm. This provides not only reuse of the
algorithm, but also reuse of its proof.

Application of dynamic programming includes Matrix chain
multiplication and Largest black square.

Index Terms—formal methods, dynamic programming, divide
and conquer, predicative style

I. INTRODUCTION

ALGORITHM design approaches, such as greedy algo-
rithms, dynamic programming, divide and conquer, and

binary search, are generally taught and understood as informal
ideas. Can we capture each algorithmic approach formally?

We are investigating how abstract specifications can be
proved to be implemented by abstract algorithms. By applying
a transformation that maps the abstract specification onto a
concrete specification, we can derive a concrete algorithm
from the abstract algorithm. This allows the abstract algorithm
to be reused, along with its proof, to implement multiple
concrete problems. The approach is summarized as follows.
Suppose we know that an abstract specification P is im-
plemented by an abstract algorithm Q, then if we need an
algorithm for a problem R = T (P ), where T is a data
transform, we can implement R with T (Q).

Dynamic programming is a recursive approach to solving
optimization and other problems [1], [3]. Like the divide-and-
conquer method, it works by finding solutions to subinstances
and combining those solutions. Unlike divide-and-conquer, dy-
namic programming saves the solutions to subinstances. There
are two approaches to implementing dynamic programming:
top-down approach, and bottom-up.

In this paper we will discuss an approach to solving
problems based on concretization of top-down and bottom
up abstract dynamic-programming algorithms. Along the way,
we also formalize the closely related divide-and-conquer ap-
proach.

First let’s consider two concrete problems to which we can
apply our techniques.

A. The Matrix Chain Multiplication

Matrix Chain Multiplication is a problem of finding the
minimum cost of calculating the product of a sequence of
matrices A1A2...An[2]. Each matrix Ai has dimensions di−1

by di .
The cost of multiplying one single matrix is zero, and the

cost of multiplying two matrices AiAi+1is di−1 × di × di+1.
The cost of any matrix chain multiplication, consisting more
than two matrices, depends on how the chain is split and
how the two subchains are multiplied. Consider the following
matrix chain example of four: A1A2A3A4. A feasible solution
is the parenthesization ((A1A2)(A3A4)). Its corresponding
cost is the sum of the following three parts:

(a) the cost of first subproduct (A1A2), d0 × d1 × d2

(b) the cost of the second subproduct (A3A4), d2×d3×d4

(c) the cost of multiplying the two matrices resulted from
the subproducts A1..2 and A3..4, d0 × d2 × d4.

Thus, the optimal cost of the product AiAi+1...Aj , where
i < j, is the minimum, over all k such that i < k < j, of the
sum of

(a) the optimal cost of calculating Ai..k,
(b) the cost of calculating Ak..j , and
(c) di × dk × dj .
For the matrix chain problem A1..n,the problem instance

space is set of chain indices: Nn The problem asks for the
minimum cost to do the multiplication.

B. The Largest Black Square

The problem is to find the size of the largest black square in
a black and white image. We will represent the image with a
constant boolean array M ∈ A×A → B where A = {0, ..N}1

and N ∈ N is a constant. Each black pixel is represented by
true and each white pixel by false. Let B = A ∪ {N}. Pixels
are indexed by A while corner points are indexed by B. The
problem is to find2

max {(p, q) ∈ B ×B · lsea(p, q)}
where lsea stands for ‘largest black square ending at’ and is
defined for each corner by

lsea(p, q) =
max {r ∈ {0, .. min{p, q}} | square(p, q, r)}

1{0, ..N} is the set of all values i such that 0 ≤ i < n
2max {x ∈ S | P · E} is the maximum over the set of all values of E

where x is a value of S such that P is true



2

where
square(p, q, r) =

(∀i ∈ {p− r, ..p}, j ∈ {q − r, ..q} ·M(i, j))
As illustrated in Figure 1, we can find the largest square ending
at a corner point (p, q) (marked as F in the figure), if we
know the sizes of the largest squares ending at each of its
three neighbors to the north, west, and north west (marked as
� in the figure).

� � � � �
� � � � �
� � � � �
� � � F �
� � � � �

Figure 1. Black and white image

In this paper we will use the Matrix Chain Multiplication
and the Largest Black Square problems as example problems
to be solved by dynamic programming.

II. DIVIDE AND CONQUER

A. The idea of divide and conquer

Divide and conquer is a recursive approach to solving
problems [2], [3]. This method divides the problem instance
to number of subinstances in order to determine a solution by
combining the subsolutions. The divide and conquer method
proceeds in three steps: divide, conquer, and combine.

Initially, the instance is divided to subinstances. Each of
the subinstances are solved making a set of subsolutions. The
subsolutions will be combined to create a solution to the
original instance.

B. Formal divide and conquer

Consider a space of problem instances P , a space of solu-
tions S, and a function f : P → S. Formally, given a problem
instance p we need to compute f(p). Each specification can
be interpreted as a boolean expression relating the initial state
to final state [4]. The specification of a problem can be written
in the following definition in SIMPLE [5], [6].

Definition EvaluateFunction(p) ::=
slot P : set
slot S : set
slot f : P → S
ensure s′ = f(p)

In order for the divide and conquer strategy to be applicable,
we need to define the following entities:

• PB and PL are sets such that PB ∪ PL = P .
• divide : PB → 2P is a function.
• combine : PB × 2(P×S) → S is a function

We assume that leaf instances PL are easy to solve and branch
problems PBwill be solved recursively. We require:

f(p) = combine(p, A) provided for all
q ∈ divide(p), (q, f(q)) ∈ A

and that divide induces a well-founded order on P .

The abstract divide-and-conquer algorithm can be written
formally as a functional program DC that refines f.

Function DC(p)
if p ∈ PL then return f(p)
else let D = divide(p)

let A = {q ∈ D · (q, DC(q))}
return combine(p, A)

III. TOP-DOWN DYNAMIC PROGRAMMING

One of the approaches to implement dynamic programming
is top-down approach [2]. The proposed formal divide and
conquer definition is used as the basis for a top-down dynamic
programming algorithm. We regard the top-down dynamic
programming approach to be simply divide-and-conquer com-
bined with memoization, that is, the storing of solutions to
instances.

To apply memoization to the existing divide and conquer
definition, a variable A is used as a table to store calculated
results. It stores a set of pairs (p, s) that satisfy s = f(p). We
write A(p) to mean that solution that is paired with p in A.
As an invariant A represents a partial function. We can get a
top-down algorithm using the refinement of function F (p).

Definition DynamicTD(p) ::=
inv ∀(q, t) ∈ A · t = f(q)
var A : P → S := ∅
proc Solve(p : P )

if ∃s. (p, s) ∈ A then A(p)
else if p ∈ PL then(

let s := f(p)
A := A ∪ {(p, s)})

else (
let D := divide(p)
for q ∈ D · Solve(q)
let s = combine(p, A))

solve(p)
s := A(p)

}

That this algorithm refines the dynamic programming problem
is expressed in SIMPLE as a theorem [5], [6].

Theorem DynamicProgramming(p) v Solve(p)
where DynamicProgramming(p) =

(∀(q, t) ∈ A · t = f(q)) ⇒
(∀(q, t) ∈ A′ · t = f(q)) ∧

(∃s · (p, s) ∈ A′)

[[p or q?]]
We have then that

Theorem s′ := f(p) v DynamicTD(p)



3

IV. BOTTOM-UP DYNAMIC PROGRAMMING

The other approach to implement dynamic programming
is bottom-up approach [2]. The same proposed formal divide
and conquer definition is used to derive bottom-up program
to dynamic programming. However, memoization applies to
the bottom-up approach is slightly different. In this method,
there could be some subinstances that are solved but never
used, but this does not happen in top-down approach. All
possible subinstances are solved, stored, and combined to
build a solution to the main problem. The bottom-up approach
avoids the memory and time overhead of recursive calls. There
is no need to use a divide function because the structure of
bottom-up approach already knows subinstances and makes a
new level subinstance in each step. Thus, to get a bottom-
up algorithm, we need, for each problem p a sequence of
problems p(i) so that p = p(i) for some n and so that each
i, either p(i) is a leaf or all problems in divide(p(i)) are in
{p(0), p(1), . . . , p(i− 1)}.

We can get a bottom-up algorithm using the refinement of
function F (p).

Definition DynamicBU (p) ::=
inv ∀(q, t) ∈ A · t = f(q)
var A : P → S := ∅
proc Solve(p : P )

let n | p = p(n)
for i : 0 to n (

if p(i) ∈ PL then(
let s := f(p)
A := A ∪ {(p(i), s)})

else (
let s = combine (p (i) , A)
A := A ∪ {(p(i), s)})

s := A(p)
}

That this algorithm refines the dynamic programming problem
is expressed in SIMPLE as a theorem.

Theorem DynamicProgramming(p) v Solve(p)
where DynamicProgramming(p) =

(∀(q, t) ∈ A · t = f(q)) ⇒
(∀(q, t) ∈ A′ · t = f(q)) ∧

(∃s · (p, s) ∈ A′)

And thus

Theorem s′ := f(p) v DynamicBU(p)

V. APPLICATION

A. Matrix chain Multiplication

To understand the Matrix Chain Multiplication problem as
an instance of the general EvaluateFunction specification, we
need to fill in the three slots of the specification.

• Define P to be the set of all finite sequences of natural
numbers with length at least 2, d0..n ::= (d0, d1, . . . , dn).

• Define S to be the set of natural numbers, n ∈ N.
• Define f to be the function that maps the sequence of

natural numbers to a natural number that is the mini-
mum cost of the, product of the corresponding matrix,
sequence: We define f recursively as

f(d0..1) = 0
f(d0..n) = min

k∈{1,..n}
f(d0..k) + f(dk..n) + d0 × dk × dn,

if n > 1

Filling the three slots S, P, and f, with these definitions adapts
the problem.

To adapt the top-down dynamic we need to determine
PL, PB, divide, and combine slots.

• Define PL to be the set of all sequences of natural
numbers with length 2.

PL = N2

• Define PB to be the set of all finite sequences of natural
numbers with length greater than 2,

PB =
⋃

n∈N|n>2

Nn

• Define divide to be the function that generates all the
subsequences of the sequence (d0, d2, . . . , dn) that are
required in the process of producing the result,

divide(d0..n) = {k | 0 < k < n · d0..k}
∪{k | 0 < k < n · dk..n}.

• Define combine to be the function that calculates the
cost of a problem instance using the solved sun-instances
stored in space A.

combine(d0..n, A) = min
k∈{1,..n}

(
A(d0..k) + A(dk..n)

+ d0 × dk × dn

)
The space A that stores the pair of problem instances and
their corresponding cost that is used by combine function.

Filling these slots adapts both top-down and bottom-up al-
gorithms, but we just derive the top-down algorithm of this
example in the following algorithm.

Definition MCMTD(p) ::=
inv ∀(q, t) ∈ A · t = f(q)
var A : P → S := ∅
proc Solve(d0..n : P )

if ∃s · (d0..n, s) ∈ A then A(di..j)
else if n = 2 then

A := A ∪ {(d0..n, 0)}
else (

for k : 1 to n− 1(
Solve(d0..k);
Solve(dk..n) );

var s := ∞·
for k : 1 to n− 1

s := s min (A(d0..k) + A(dk..n)
+d0 × dk × dn))



4

A := A ∪ {(d0..n, s)}
solve(p)
s := A(p)

}

The optimization problem of matrix chain multiplication re-
turns the minimum cost. In order to get the process of doing
the multiplication we can store the breakpoints k of each
sequence longer than 2.

B. Largest Black Square

To understand the Largest Black square problem as an
instance of the general EvaluateFunction specification, we
need to fill in the three slots of the specification.

• Define P to be the set of all corner points (p, q) ∈ B×B,
where B = {0, .., N}

• Define S to be the set of numbers r such that 0 ≤ r ≤ N.
• Define f to be

f(p, q) = lsea(p, q)

where

lsea(p, q) = max{r ∈ {0, ..min{p, q}} | square(p, q, r)}

square(p, q, r) = (∀i ∈ {p− r, ..p}, j ∈ {q − r, ..q}
·M(i, j))

Filling the three slots S, P, and f, adapts the problem.
To adapt the bottom-up dynamic programming algorithm

we need to determine PL, PB, divide, and combine slots.
• Define PL to be the set of all pairs (p, q) that are

located on the most top row or the most left column,

PL = {(p, q) ∈ B ×B | p = 0 ∨ q = 0}.

• Define PB to be all other points

PB = {(p, q) ∈ B ×B | p 6= 0 ∧ q 6= 0}

• Define divide to be the function that generates the set of
three neighbors of a point (p, q) to the north, west, and
north west,

divide(p, q) = {(p− 1, q), (p− 1, q − 1), (p, q − 1)} .

Note that these three neighbors are lexicographically prior
to (p, q).

• Define combine to be the function that finds the size of
the largest black square using the solved neighbor points
stored in space A. The idea is that if a square is black, the
largest square at (p, q) can not be larger than 1 plus the
largest square ending at any of the neighbors generated
by divide. On the other hand, there is a square ending at
(p, q) that is of size 1 plus the minimum of the squares
ending at the three neighbors.

combine((p, q), A)
= if ¬M(p− 1, q − 1) then 0

else 1 + min{A(p− 1, q), A(p, q − 1), A(p− 1, q − 1)}

These slots adapt both top-down and bottom-up algorithms,
but we just derive the bottom-up algorithm of this example in
the following algorithm. For the bottom-up algorithm the other
decision that needs to be made is the ordering of the instances
so that subinstances are solved before superinstances. For this
problem, instances can be ordered lexicographically.

Definition LEASBU ::=
inv ∀(q, t) ∈ A · t = f(q)
var A : P → S := ∅
proc Solve

for i : 0 to N
for j : 0 to N (

if i = 0 ∨ j = 0 then
A := A ∪ {((i, j), 0)}

else (
var s·
if M(i− 1, j − 1)

s := 0
else

s := 1 + min{A(i− 1, j), A(i, j − 1),
A(i− 1, j − 1)};

A := A ∪ {((i, j), s)})
Solve

}

This algorithm serves to calculate the lsea function for each
intersection point and store the result in the A table. To find
the largest square is now just a matter of looking for the largest
value in the table.

VI. CONCLUSION

Abstract algorithm of dynamic programming has been for-
mally developed using abstract specification. This specification
includes the problem space, solution space, and a function
mapping them. This abstract algorithm is both presented in
top-down and bottom-up approaches. Application of dynamic
programming such as Matrix chain multiplication and Largest
black square represents how this abstract algorithm can be
implemented in concrete algorithms.

REFERENCES

[1] A. Lew and H. Mauch, Dynamic Programming. A computational tool,
Springer, 2007

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, 2nd Edition, McGraw-Hill, 2001

[3] J. Edmonds, “How to think about Algorithms. Loop
invariants and recursion,” version 0.12, Jan. 2007;
http://www.cse.yorku.ca/~jeff/notes/3101/TheNotes.pdf

[4] E. C.R. Hehner, A Practical Theory of Programming, Springer-Verlag,
1993

[5] T. S. Norvell and Z. Ding, “An environment for proving and program-
ming,” in Newfoundland Electrical and Computer Engineering Confer-
ence, October 1999

[6] T. S. Norvell, “Faster search by elimination,” in Newfoundland Electrical
and Computer Engineering Conference, Nov. 2005


