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Abstract: Inthisreport | explore some ideas for formally specifying modules based on
the trace assertion method outlined in, for example, [Parnas and Wang 1989].

These ideas include:

e A formal mathematical theory of trace specifications which is independent of their
intended application to module specification (Chapter 2).

e Some ideas on presenting modul e specifications (Chapter 3).

¢ A theory of trace specifications for dealing with modules that call other modules (Chap-
ter 4).

¢ Automata theoretic models for trace specifications of the sort defined in Chapter 4
(Chapter 5).

¢ A theory of trace specifications for cases where deterministic automata are not suitable
models (Chapter 6).
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CHAPTER 1 Introduction and Notation

1.1 Introduction

The trace assertion method should be set on firm mathematical foundations and presenta-
tions of trace specifications should use a minimum of mathematical notation peculiar to
trace specifications. This short report presents some ideas for achieving these goals. It
builds on the ideas in [Wang 1994], [Parnas and Wang 1989], and [Iglewski, Madey, and
Stencel 1994]. Although thisreport isintended to be self contained, readers not familiar
with the earlier work on trace specifications will likely find the introductory material alit-
tle brisk.

The structure of thisreport is atheme and variations. The theme is set in Chapter 2 with a
simple mathematical theory of trace specifications. From there the reader can explore the
other chaptersin virtually any order.

The reader interested in presentations of trace specifications will go to Chapter 3.

The reader interested in the specifications of modules that use other modules may want to
skip to Chapter 4, although the presentations used as examples depend on Chapter 3.

The reader interested in automata theoretic models can skip to the first part of Chapter 5.
The second part presents models for the theory in Chapter 4.

The reader interested in further exploring nondeterminism may want to skip straight to
Chapter 6, although the exampl e presentation depends on Chapter 3.

The original motivation for this report came from teaching trace specifications to third
year undergraduate engineering students. | found that the mathematical notations used in
published descriptions of the trace assertion method were too particular to the trace speci-
fications. Instead of introducing new notations, | wanted to teach the method. Luckily |
found that the notations the students had already been taught — standard notations from
predicate calculus and set theory — together with simple tables were quite adequate and,
in some ways, superior for expressing trace specifications.

The improvements, if improvements they be, are two-fold. First the underlying theory is
dightly different from that in previous work, and is spelled out in the form of an axiomatic
theory. Second there are cosmetic changes to the presentation of trace specifications.

The value of trace specificationsis not just that they form a nice theory, but that they can
actually be used to document programs at the locations where documentation can be most
effective: i.e. at module interfaces. It is therefore important that trace specifications be as
readable as possible. So any changes to the presentation of trace specifications that
enhances their readability are desirable.




The main changes to the theory are an extension to cover cases where the empty traceis
not canonical and anew way of expressing misuse of modules. The theory here, asin
[lglewski, Madey, and Stencel 1994] and [Janicki 1995], and in contrast to [Wang 1994]
and [Parnas and Wang 1989], treats nondeterminism by putting the selection of responses
prior to the selection of a next canonical trace.

The main changes to the presentation of trace specifications that | propose are (a) the use
of simple tables with no odd rules about quantification and (b) the reduction of pointless
repetition. There are also minor notational clarifications. For example, trace specifications,
as presented in earlier papers, have used variables which are implicitly quantified over
limited scopes. Such notational quirksall contribute to making trace specifications alittle
mysterious to the uninitiated.

1.2 Some Notational M atters

The examples and discussion that follow will require some notation for mathematical
objects and operations. Therefore, this section introduces that notation that is not entirely
standard in mathematics. Most of the particular notations introduced are not closely tied to
the other aspects of this paper, so if you like them, use them, if you don’t, then please bear
with me.

1.2.1 Segmentsand Sequences

Segments of the integer numbers are often useful, so | will use the abbreviation:

{i,...]} = {keints:i<k<j} .
Note the asymmetry. A function with domain {0, ...n} (for some natural n) iscalled a
finite sequence of length n. | will abbreviate the set of all finite sequences of length n
with rangesincluded in X —i.e. {0, ...n} — X— by X" The set of all finite sequences
with rangesincluded in X —i.e. the union of all X" for n > 0— iswritten X" .The unique
member of X° iswrittenas _, and the unique member of {x} ! as (x). The catenation of
finite sequences T and U iswritten as T.U, and a catenation (a). (b). (c) iswritten

(a, b, c).

Since transfinite sequences will not be used in this paper, I'll just say “sequence” when
“finite sequence” would be more proper.

Thelength of asequence T iswritten as #T; for example #(a, b, ¢c) = 3. The sequence
of length j — i that mapsits argument to i plusthe argument iswritten (i, ...j); for exam-
ple (13, ...16) = (13, 14, 15). A sequence composed with a sequence gives a sequence
of resultslikethis T- (X, y, z) = (T (X), T(y), T(2) ). Anidentity using all three of these
notationsis T- (0, ..#T) = T

Two slight abuses of notation will be tolerated when dealing with sequences. First, if itis
clear that x isnot a sequence, then it is ok to write x rather than (x) when it isclear that a
sequence isrequired; e.g. s. 1.t should be understood to mean s. (1).t. Second, the appli-
cation of a sequence to an argument may be written as T, rather than T (i) .




1.2.2 Variable Binding Constructs

Quantified formulaewill be written as, for example, (3!'xe X: R: P) with X being a
set, R being aformulathat further restricts x and P being aformula. More than one vari-
able can be bound, for example (Vxe X;ye Y: R: P). Quantified termsfollow the
same pattern except P isreplaced by aterm. For example (Zxe X: R: t).

Three abbreviations are used in quantified formulaeand terms, and in comprehensions.

e The condition R may be omitted in which case it defaults to true. For example:
(Zxe X f(x)).

e Theset X may be omitted (together with the € ) in which case it defaults to the largest
set that makes R and P (or t) well defined. For example, if the domain of even isthe
integers, theterm (XX : even(x) : 1/x) abbreviates

(Zxe int— {0} : even(x) : 1/x) .
This abbreviation should be used with care.

e Finaly, t may be omitted (together with the preceding colon), in which case the default
Is x. For example, (min i € Primes: i>j) isminimum prime greater than n. This
abbreviation only makes sense if asingle variable is being bound.

Attimesit iseasiest to describe an object by stating aproperty of it that uniquely identifies
it. For example, the positive square root of two is simply described as “that positive num-
ber which when squared yields 2.0”. Using common mathematical notation, it is easy,
using set comprehension notation, to describe the singleton set containing only the posi-
tive square root of 2 as

{xe R: X>0AX = 2} .
But, thisis not what is wanted; we want the sole member of this set. We will use the nota-
tion (xe X: R) to meanthe sole member of theset {xe X : R} . Thuswe canwritethe
positive square root of 2 as

(xe R:x=20AX2=2) .
If the set expression {xe X : R} isundefined or is defined, but not a singleton, then the
expression (xe X : R) isundefined. We call this notation solution comprehension.

Set comprehension notation can be generalized to be analogous to quantified terms.

{xe X: R: t} will bethe set of al things obtained by replacing variable x in term t
with avalue from X such that R is satisfied. We can define such three-part set comprehen-
sions in terms of two-part comprehensions

{xe X:R:t} ={y: (Ixe X:R:y=1t)}

(wherey isnot freein R or t). Solution comprehensions are generalized the same way. So
for example (i € Indecies: SIN (i) = 120884908 : Iname (i) ) will be, if defined, the
common last name of all people with 120884908 as SIN. In both solution and set compre-
hensions, it makes sense to allow more than one variable to be bound.

A lambda expression iswritten as (x € X : R: t) and denotes that function f with
domain {xe X: R} ,suchthat f(c) equalst’é —i.e. t with x replaced by c—for al cin
the domain. For example, the function that maps even integersto their successors might be
written (i € int : even(i) : i+ 1). Since we are modeling finite sequences with func-




tions, lambda expressions make a concise way to write sequences that obey somerule, for
example (0, 1, 4, 9, 16, 25, 36) canbewrittenas (ie {0,...7} :: i2>. Inthispaper that is
the only use that will be made of lambda expressions, and we will call this special case
sequence comprehension.

1.2.3 Cartesian Products

Given a sequence of sets S, we write the Cartesian product of S as I1S or equivalently as
S X S X = X Syg_1 -

The members of this set are written (a, b, ..., ¢) . Note that for any set A, we have

IT{A) = A,andthatIT_ = {( )} —( ) beingtheempty tuple. | will sometimeswrite

a/b/.../cratherthan (a, b, ..., ¢) , especially when dealing with “event-response” pairs

(defined later).

1.2.4 Tables

A one-dimensional normal function table consists of alist of formulaeand alist of terms
(of equal length). A normal function table isaterm. In any state (assignment of values to
the free variables), the table is undefined unless exactly one of the formulae is true. Other-
wise the value of the table is the value of the corresponding member of the term list. For
example the table

a=>Db| o0
a<b || —-a
a>b || +a

equals 0, —a, or +a depending on whether a is equal, lessthan, or greater than b.

A different sort of table isthe vector equality table. An example vector equality tableis

a=b|a<b|a>b
S = u Y, w
t = X y z

which isinterpreted as the formula

(a=bAas=uat=Xx) v (a<bas=vat=y)v(a>bas=wat=2 .
Any terms may appear in the row header. The formulae that appear in the column header
must be such that exactly oneistruein any state.

125 Try-else

| define“try x else y” to equal x when x is defined and to equal y when x is undefined.
For example: “try 5+ 0 else 9” equals 9.




1.2.6 Discussion

Modeling sequences as functions is a matter of notational and conceptual economy. It has
the disadvantage of requiring a higher order logic in order to quantify over sequences. One
could equally well introduce sequences as first-order objects asis done in [Parnas 1994].

Having a uniform syntax for quantifiers and comprehensions is again a matter of nota-
tional economy. It istempting to introduce some semantic uniformity as well, noting that
many quantifiers (e.g. universal, existential, summation, maximum, etc.) are related to
binary operators (e.g. A, Vv, +, max) in analogous ways. But some of the quantifiers (exists
unique, for example) do not fit this patterns.

Of the abbreviated forms of variable binding, the omission of the set X isthe only one that
can cause trouble. As mentioned, it should be used with discretion. The abbreviation only
makes sense when a unique set is determined. For example {x: x¢ x} does not make
sense, unless one is assuming some closed universe.

The 3-part set comprehension notation can be found in the Z language [Spivey 1987] and
evenin at least one discrete math textbook [Gries and Schneider 1993], it isclosely related
to the axiom of replacement in Zermelo-Fraenkel set theory. The notation is only of mar-
ginal usefulnessin trace assertion specifications, but it provides a nice stepping stone to 3-
part solution comprehensions, which are of great usefulness in specifications.

The solution comprehension is rarely used in mathematical writing. It has been indepen-
dently rediscovered a number of times, with subtle differences in the treatment of the
undefined cases. Russell and Whitehead may have been the first [Russell and Whitehead
1910]. Inthe Z language it is called “ definite description” [Spivey 1987]. It isalso very
similar to the*let” and “solutions’ constructsintroduced in [Norvell and Hehner 1993], to
the demonic choice quantification of [Ward 1994], and to the epsilon function used by Hil-
bert [Bernays 1935]. When X isasingleton and R is true, it isequivalent to the “let” con-
struct found in many functional languages. The recommended English reading of

(xe X: R:t)is“let xin X suchthat Rint” or “t where x in X issuch that R and for
(xe X: R),“that x in X suchthat R”.

Normal function tables are introduced in [Parnas 1992]. Vector equality tables are inspired
by table types in the same report, but differ in detail from all of them.

The try-else construct is similar to that introduced in [Norvell and Hehner 1993].
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CHAPTER 2 Theory of Leaf Modules

2.1 Introduction

Shortly I will present a mathematical theory of trace specifications entirely divorced from
its application to modul e specifications. However to aid the reader, | will first mention
how the theory will be used. A trace specification —as will shortly be defined— consists
of six mathematical objects.

e Anaphabet ER of event-response pairs. Each member of ER isapar E/R where E
isacall to amodule (the name of an access program together with the values of all
value parameters and global variables that might be read by the module) and R is a pos-
sible response of the module. By “possible” what is meant is syntactically possible. For
example, if an access program inc takes a single integer value-result parameter, then
for al integersi and j, the pair (inc(i)) /j should bein ER. The domain of ER will
be called the set of events and the range of ER will be called the set of outputs or
r eSpoNnses.

e Canisaaset of traces. Each member of Can is arepresentative of a set of traces that
al lead the module to states that are indistinguishable from each other by any future
experimentation. Can is called the set of canonical traces.

e |nit isacanonical trace that represents the initial state of the module. It is called the
initial trace.

e cisafunction that indicates when a particular call to the module is a proper usage of
the module. It is called the competence function.

e o isafunction that indicates what responses the module might make to any call. It is
called the output function.

e eisafunction that indicates what canonical trace represents the trace that results from
adding an event/response pair to atrace. It is called the extension function.

In addition to these undefined terms, we will define a set of feasible traces Feasibl e that
consists of all the traces that might arise from the usage of a module, and areduction
function r that reduces any feasible trace to a canonical one.

2.2 Basic Definitions

A pre-trace specification isatuple (ER, Can, Init, ¢, 0, e) where ER isaset of pairs,
Can isasubset of theset ER™ of sequences of pairs drawn from ER, Inite Can,

ce Canxdom(ER) — Bool,

oe Canx ER— Bool,

11



and
ee {T;E;O:0(T,E/O) : (T,E/O)} — Can.

We define a subset of the traces called Feasible and afunction r € Feasible — Can
together by mutual recursion (on the length of traces):
__ € Feasible
r(_) = Init
(T.(E/O) € Feasible) = (Te Feasibleao(r(T),E/O))
r(T.(E/0)) = e(r(T),E/0)

A trace specification is a pre-trace specification that satisfies the following axioms:
(ts0) (VT;E: Te Canac(T,E) : (30 :: o(T,E/Q))).
(tsl) Init isfeasibleand, if T isintherange of e, then T isfeasible.
(ts2) If T iscanonical and feasible, thenr (T) = T.

The theorems and definitions to follow assume we have a trace specification.

Define the expanded output function: 0 € Feasible x ER— Bool by
o(T,E/0) = o(r(T),E/O)

and the expanded competence function ¢ € Feasible x dom(ER) — Bool by
C(T,E) = c(r(T),E).

2.3 A Few Theorems About Trace Specifications

Theorem O: If T isfeasible, then, for any event E such that ¢ (T, E) , thereisan O such
that T. (E, O) isfeasible.

Proof: Immediate from (ts0) and the definition of feasible.
QED

Theorem 1: If Tisintherangeof r, then T isfeasible.

Proof: Let T beintherange of r. From the definition of r, T iseither Init or in therange
of e. In either case, it isfeasible by (tsl).
QED

Theorem 2: Therange of r is Can n Feasible.

Proof: From the type of r we know itsrange is contained in Can and from theorem 1 that
itsrangeiscontained in Feasible, so ran(r) c Cannn Feasible. Let T bein

Cann Feasible. By (ts2) itisintherangeof r. Thus Cann Feasiblec ran(r) .
QED

For feasible T and U, define T=U iff r (T) = r (U) . Thisequivalencerelation iscalled
specification equivalence.

12



Theorem 3: If T isfeasible and canonical and o (T, E/O) , then
T.(E/0) =e(T,E/O) .

Proof. Let T be feasible and canonical, and E and O be suchthat o (T, E/O) . By (tsl)
wehaveo(r (T), E/O), thusby the definition of feasible, we havethat T. (E/O) isfea
sible and hence in the domain of r.
r(T.(E/0))
{defn r}
e(r(T),E/O)
{(ts2)}
e(T,E/O)
{By (tsl) thisexpression is feasible. Apply (ts2).}
r(e(T,E/0))

QED
Theorem 4: T=U implieso(T,E/O) = 0(U,E/O) and c(T,E/O) = ¢(U,E/O).

Proof:
o(T,E/0O)
{defn o}
o(r(T),E/O)
{T=U}
o(r(U),E/O)
= {defn 0}
0(U, E/O)
And likewise for c.
QED

Theorem 5: If T=U,and T.V and U.V are both feasible, then T.V=U.V.
Proof is by induction on the length of V. The base caseistrivial.

Inductive Case: We can assumethat V = W. (E/O) (for some W, E and O). Since Wis
shorter than V (and noting that T.W and U. W must both be feasible) we have, by the
induction hypothesis, that T.W=U.W.
r(T.V)
= {V=W.(E/O)}

r(T.W. (E/0))

{defnof r}
e(r(TwW),E/O)

{T.W=U.W}
e(r(U.w),E/O)

{retracing our steps}
r(u.v

QED

13



The extensions of afeasibletrace T istheset {V : T.V e Feasible} . Two feasible
traces are said to be observationally equivalent (written T = U) iff they have the same
extensions.

Theorem 6: Specification equivalence is a refinement of observational equivalence. That
is

T=U=T=U ,
for al feasible T and U.

Proof: Let T and U be feasible traces suchthat T=U. Let V be amember of the set of
extensions of T. We need only prove (by induction on the length of V) that V isaso an
extension of U.

Base Case: Supposethat V = _.
U.V isfeasible
= {v=_}
U isfeasible
= {by assumption}
true

Inductive Case: We can assumethat V = W. (E/O) (for some W, E and O). Since T.V
isfeasible, T.W isfeasible and as an induction hypothesis W is an extension of U sowe
have U.W isalso feasible.
true
= {by assumption}
T.Visfeasible
= {V=W.(E/O)}
T.W. (E/O) isfeasible
= {defn of feasible}
T.We FeasibleAo(T.W, E/O)
{T.Wisfeasible}
o(r(T.W),E/O)
{defn o}
o(T.W,E/O)
{theorem 5 (T.W= U.W) and theorem 4}
o0(U.W, E/0O)
{retracing our steps}
U.V isfeasible

QED

14



2.3.1 Support for the theorems

The following diagram shows how these theorems are supported by the axioms.

Thm 2
Thm O
Thm1 Thm 3 Thm 6
(ts2)
(ts0) (ts1) (ts1) | | (ts2) Thm4|| Thm5

The interesting thing is that Theorems 4, 5, and 6 are true of pre-trace specifications.

2.4 Determinism

It often happens that for feasible trace T and event E thereisaunique O such that
0 (T, E/0) . Inthiscase, we will generally take the liberty of writing any feasible trace
T. (E/O).U as T.E. U, since the output component is redundant.

In presentations of trace specifications, we will leave out redundant output components
even in the definitions of Can, c, e, and o.

2.5 Discussion

The intended use of trace specificationsis to specify or to describe the behaviour of |eaf
modules, that is modules that call no modules themselves. The events are just callsto the
modul€’s exported routines (access programs in the terminology of [Parnas and Wang
1989] and [Iglewski, Madey, and Stencel 1994]) and the outputs are the results returned
from the exported routines. In the case of a specification, the set of feasible traces, derived
from a trace specification, documents the allowed behaviour of the module. | say allowed
behaviour because the actual behaviour may be less nondeterministic than the documented
behaviour. The expanded competence function specifies those callswhich are valid uses of
the module. In the case of adescription, the set of feasible traces documents the possible
behaviour of the module.

The presentation of trace theory above is based very much on [Iglewski, Madey, and Sten-
cel 1994]. | have used a characteristic function rather than arelation for outputsin order to
make it easier to define them simultaneously with the extension function (discussed
below). The competence function isnew asis Init.

The axioms and theorems are new. Axiom (ts0) is an axiom of excluded miracles. Axioms
(tsl) and (ts2) are primarily intended to ensure a correspondence between external obser-
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vations and the abstract states of the module. Without this, the trace specification method
devolvesinto an artificially constrained form of model-based specification. For example,
for any trace specification, there is a pre-trace specification that usesin place of each
canonical trace itsreverse. This pre-trace specification violates (ts2). Axiom (ts2) isan
axiom of realism.

Axioms (tsl) and (ts2) are alittle ugly asthey involve derived concepts (feasibility and the
reduction function r). However, in practice, | don’t think they will be hard to check or
hard to meet. These axioms can probably be simplified in the caseswhere Init = _.

The most important theorem is theorem 6; it states the soundness of the method. Theorem
6 is proved without using the axioms at all. Thus the purpose of the axiomsisto ensure
realism and miracle exclusion, but not soundness.

| have not insisted that specification equivalence and observational equivalence be equal.
Thisis because making the set of canonical traces small enough that there is a unique
canonical trace in every observational equivalence class can make definitions unnatural .
Consider —as we will in Chapter 3— a generic set module. The usual way of making the
set of canonical traces so small that it contains exactly one representative of each observa-
tional equivalence classisto admit only traces sorted by sometotal order as canonical. But
the use of an order to describe a set module seemsto me to be artificial. The disadvantage
of the approach taken hereisthat correct implementations may not by provable using the
abstraction function technique. This problem can be avoided by using an abstraction rela-
tion which relates each state to each canonical trace that it might represent.

None of the sets of events, outputs, or canonical traces are required to befinite. If they are
finite, that’s ok, but the specification method works equally well for modules with an infi-
nite number of states.

Another reasonable restriction that | have not made would be to insist that all canonical

traces be feasible. Thiswould simplify the theory slightly and likely not inconvenience
anyone. On the other hand, allowing canonical traces that are not feasible seemsonly to
have the effect of forcing one to pedantically state that atraceis not only canonical but

also feasible. Annoying, but not harmful.

The competence function does not restrict the range of the output, so the specifier must
still specify what outputs are valid for an invalid event. The occurrence of an event such
that the competence function isfalseis called ‘incompetent’ use of the module. Various
interpretations are possible for what the module should “do” when used incompetently:

¢ IntheLD interpretation the module may either loop forever or return from the call,
but, if the call is returned from, the output must be as specified by the expanded output
function.

¢ Inthe VDM interpretation, anything at all may happen.
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¢ Inthefirewall interpretation, it isincumbent on the module to “notice” the problem
and to cause some remedial action to take place. The remedial action might consist of
printing an apologetic message and shutting down the system, calling on some emer-
gency code to restore consistency, or something else that is appropriate to the applica-
tion. In any case, the error should not go unreported.

Regardless of the interpretation taken, it is the responsibility of the programmers of all cli-
ents of amodule to ensure that events that make the competence function false do not hap-

pen (unless the client module itself is used incompetently).
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CHAPTER 3 Presentation of Leaf Module
Specifications

3.1 Trace specification documents

The purpose of atrace specification document is to present a trace specification and to
connect the events and outputs defined in the trace specification with the actual code of a
system. It isimportant not only that the presentation of the trace specification be complete
and unambiguous, but also that it be as easy to read as possible.

| will divide trace specification documents into the following sections:

¢ Introduction: The name of the module and a description of module parameters.

e Syntax: Definition of ER.

¢ Dictionary: Definition of auxiliary functions, predicates, and macros.

e Canonical Traces: Definition of Can.

e Initialization: Definition of Init.

e Behaviour: Definition of ¢, o and e.

3.1.1 An Example
Module Set[A : type]

Themoduleis called “Set” and is generic over all types A.

Syntax:
insert va A
delete va A
in va A res Bool

The module has three exported routines. The first parameter of each is a value parameter
of type A and the second parameter of routine “in” isaresult parameter of type bool.

Each exported routine givesrise to a set called an event class. The three event classes here
are {(ae A) ::insert(a)}, {(ae A) i delete(a)},and { (ac A) ::in(a)}.
(Note that these are three-part set comprehensions.) Each routine name acts as a function
from the space of its value parameters to some set (it doesn’'t matter what set, aslong as
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it's big enough). We assume that each of these functionsis one-one (injective) and that
their ranges are (pairwise) digoint. Let us call the event class associated with aroutine X,
EC,.

Each exported routine also givesrise to aset called aresponse class. The response classes
are formed by tupling the result parameters. In this case, the three response classes are
{()}, {()},and Bool. Let uscall the response class associated with aroutine X,
RC,.

Let X bethe set of all exported routines, the alphabet of our trace specification is ssimply
ER = (Uxe X EC,xRC)) .

There is no problem with value-result parameters. They simply contribute to both the
event class and the response class. It is agood convention to list value parameters first,
then value-result parameters, and finally result parameters.

Dictionary: None

In this case, there are no definitions to be made. Definitions can be of predicates or func-
tions, or they can be simply be “text macros’.

The dictionary is placed here because it will likely make use of the event and output sets
and because the functions defined here may be of usein any of the subsequent sections —
declaration before use.

Canonical Trace:

Can = {xe A" : (Visj i x = X : i =j):(ie {0, ..#x} i insert(x))}

| have decided to use adirect definition of the set. One could instead give the characteristic
formulaof the set. E.g.

(Te Can) = (Ixe A*T: (Visjix=x1i=]): (ViiT =insert(x)))
Either way seems reasonable.

Initialization: Init = _

Thisisthe common case. The exception iswhen _isnot canonical. Although this caseis
common, it isaso short, so | suggest it not be made a default.

Behaviour:

The behaviour section presents the routines in the order given in the syntax section. For
each routine we must define ¢, 0, and e for each event class.
e(T,insert(x)) =

di 0 T, = insert(x) T
—(Ji = T, =insert(x)) || T.insert(x)
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For “insert” | did not define 0. The reason isthat “insert” events are associated with
exactly one output, namely ( ) .| aso did not define c for this event class. We will adopt
the convention that if ¢ isnot mentioned for a particular event classthen it is by default
defined to be true for all canonical traces and eventsin the class.

The eagle eyed will have noticed that second argument of e has the wrong type. Strictly,
the left hand side of the equation should begin with e (T, (insert (x)) /0) . We will use
the convention that if the response part of the second argument to e is not used, it will be
omitted.

e(T, delete(x)) =

i o T, = insert (x) (i:T,=insert(x) : (T-40,...i)) . (T-(i+1,..#T)))

— (3 = T, = insert(x))

The use of 3! makesit clear that the solution comprehension iswell defined. Looking at
the definition of “canonical”, it is clear that 3 could aso have been used.

o(T,in(x)/b) = (b= (Ji:: T, =insert(x)))
e(T,in(x)) =T

The definitionsfor “in” show a nontrivial response class. Thus we give aformula defining
o for this event class, but as the response is not used in the definition of e, we omit it.

End of Module Set

3.1.2 Pattern Matching

In [Wang 1994] and [Parnas and Wang 1989] much use is made of pattern matching.
Rather than directly supporting pattern matching with any new notations, one can adopt a
pattern matching style. The Set module just presented could also be presented in pattern
matching style as follows.

In the Dictionary section we define a macro:
Matchis T = U.insert(x).V

(By a“macro” | mean that wherever we see the word Match in the specification, we
should mentally replace it with the left hand side. In particular this means that the free
variables (T, U, V, and x) receive their bindings at that time. Conversely we should not
reckon the free variables of any formula without first performing macro expansion.)

In the Behaviour section we define.

e(T,insert(x)) =

J1U;V :: Match T
—(3'U;V :: Match) T.insert (x)
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e(T, delete(x)) =

J1U;V :: Match (U;V: Match: U.V)
—(3'U;V:: Match) || T

o(T,in(x)/b) = (b= (3A'U;V :: Match))

e(T,in(x)) =T
Again the definition of the extension function for “delete” uses a solution comprehension.
3.1.3 Using Vector Equality Tables
In this trace specification, and in others, quite a bit of repetition is caused by the fact that

similar tables are used in various formulae. In the present example, we could write the
entire contents of the Behaviour section as a single not-too-crowded vector equality table.

J1U;V :: Match —(3'U;V :: Match)
e(T,insert(x)) = T T.insert (x)
e(T, delete(x)) = (U;V: Match: U.V) | T
o(T,in(x)/b) = b —b
e(T,in(x)) = T T

3.1.4 Discussion

Even more conciseness can be obtained by using the “try-else” construct. We could write:

e(T,insert(x)), T, T.insert (x),

e(T, delete(x)), = try |U;V: Match: u.v, else T,

o(T,in(x)/b), b = true, b = false,
e(T,in(x)) T T

The three separate bindings and pattern matches of variables U and V have been reduced
to one. Using atabular notation for such expressions could make them more palatable.

The presentation of the trace specification is enhanced by a number of conventions. The
exported routines are described in the Behaviour section in the order they appear in the
syntax section. It is best to choose this order so asto group similar programs together. The
¢ function is omitted when its value is always true. The o function is omitted when its
value isthe empty tuple. The e function is present for every exported routine. The third
parameter is omitted when it isirrelevant, this allows one to quickly see which routines
really depend on the third parameter.

The linkage between the trace specification and the actual code is an issue that | have cho-
sen not to address. For example, in C, should the result of the “in” routine be passed viaa
pointer parameter, by assignment to aglobal variable, or using C's “return” statement?
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This sort of question should be answered somewhere —perhaps in the trace specification
document, or perhapsin a separate document. In any case such linkage matters should not
be allowed confuse the description of trace specifications as mathematical objects.

Another linkage question is how the module isinitialized. Again, while this issue may be
addressed in the trace specification document, it should not be dealt with by the mathemat-
ical trace specification.

3.2 Nondeterminism

In this section we look at two examples with nondeterminism. The first uses traces where
we can forget about the fact that the members are really pairs. The second does not.

3.2.1 Independent Nondeter minism

Our first example is another “set” example. We just replace the “delete” and “in” routines
with asingle routine “get” that provides and deletes an arbitrary member of the set.

Module GetSet[ A : type]

Syntax:

insert va A
get res A res Bool

Dictionary:
Matchis T = U.insert(x).V
Canonical Trace:
Can = {xe A : (Visj:x=x:1=]): (e {0,..# insert(x))}

Initialization: Init = _

Behaviour:

F'U;V . Match | —(3'U;V :: Match)
[e(T,insert(x)) = || T T.insert (X)

T#_ T =
bA (3U;V :: Match) | —b
(U;V: Match: U.V) | T

o(T,get( )/ (xDb))
e(T,get( )/ (x b))
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In this trace specification, one can see how the output function for “get” describes the
acceptable outputs and the extension function for “get” determines the next state based on
the output.

| call this sort of nondeterminism independent because the selection of outputsisinde-
pendent of the outputs along the canonical trace.

3.2.2 Dependent Nondeter minism

Our second example is a sort of name server. | have used such amodule in a compiler to
convert identifiers and keywords into unique numbers suitable for use as array indices.
This example also shows anontrivial ¢ function.

Module IdTable [A : type, N : nats]

Syntax:

enter | val A res {0, ...N} | resBool
get |val {0,..N} |resA

Dictionary:
Match is T; = enter (a) / (X, true)
Canonical Trace:
Can = {ne {0,..N};ae A";xe {0,..N}":
(Vi) - ai:ajvxi:x-:i:j) X
(ie {0,..n} : enter (&) / (X, true))}

Initialization: Init = _

Behaviour:
di;x :: Match —(3i;x :: Match)
#T = N #T=N
o(T,enter (a)/ (x,b)) = bA (di:: Match) | =b bA—(di;a:: Match)
e(T,enter (a)/ (x,b)) = T T T. (enter (a) / (x, b))
dija:: Match | —(3i;a:: Match)
c(T,get(x)/a) = true false
o(T,get(x)/a) = di :: Match true
e(T,get(x)) = T T
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In the table for “enter”, | have used the abbreviation of stacking up conjuncts, so the head-
ings for the last two columns are really
—(di;x :: Match) A#T =N
and
—(3i;x:: Match) A#T#N
respectively.

The competence function for “get” saysthat it isincompetent to try to “get” the value
associated with aninvalid index, i.e. an index that was not produced by the module itself.
The output function saysthat, if the “get” routine is misused, the result could be anything.
But the value of the output function for incompetent uses is only meaningful, if the LD
interpretation is used.

This example shows what happens when the output is dependent not only on the history of
events in the canonical trace, but also on the history of outputs.

3.3 Conclusions

3.3.1 Conciseness and Clarity.

Conciseness and clarity both aid readability and understandability. But thereisatension
between conciseness and clarity. Conventions that allow important information to be con-
veyed without any print are examples: precedence rules that allow parentheses to be omit-
ted, multiplication and composition being written as juxtaposition, the implicit universal
guantification of the free variables of aformula are examples.

A fair degree of concision has been obtained. Has clarity been sacrificed? Thisisup to the
reader, but | will point out that the main sources of conciseness are: (@) the use of vector
equality table, which allows normally repeated termsto be written only once, (b) the use
of macrosto allow common subexpressions to be hoisted out of tables, (c) theimplicit uni-
versal quantification of the variables, (d) the implicit typing of variables, (€) ignoring out-
putsin traces and definitions when they areirrelevant, and (f) omitting definitions of o and
c for some event classes. Let’s ook at each of thesein turn.

Vector equality tables provide useful structuring and contribute to conciseness at the
expense only of repetition. So they add to clarity.

Macros can contribute to page flipping (nonlocallity of relevant information), but it seems
to me that they also provide names for useful concepts.

Implicit universal quantification is more of a problem. It makes it impossible to be sure
that amisspelling istruly a misspelling rather than a variable with a similar name. It also
means that the reader must understand which variables in a defining formula are being
defined (¢, e and o in our examples), which are aready defined (macro names and
exported routine names, in our examples), and which are the universally quantified vari-
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ables(a, b, x, and T, in our examples). An alternative isto allow only the variables men-
tionsin the headers of ¢, e and o to be implicitly universally quantified.

The implicit typing of variables is another potential problem. | have simply said that the
type of such avariableisthe largest set such that the expressionsin their scope well
defined. Thisis somewhat vague and possibly ambiguous. Extensions to the Hindley-Mil-
ner type system such as [Wadler and Blott 1989] may point the way to making thisidea
precise. In [Parnas 1993], another route is taken, the type of al variablesis auniversal set
and there are special rules for dealing with the undefined values which arise as a resullt.
Unfortunately, these rules are not standard mathematics. Yet another approach isused in
the PV S and Larch specification languages [ Shankar et a 1993, Garland and Guttag
1990]. In these languages, one can declare that all variables of a certain name have a cer-
tain type wherever they are bound. For example one could declare

Var Te Can
once. This solution isreminiscent of Fortran’sIMPLICIT declaration. Thislast solutionis
particularly appealing because it combines well with implicit universal quantification:
Any variable with an implicit type may be implicitly universally quantified

Ignoring outputs in traces and in applications of e when they are not needed seemsto me
to only add to clarity. By not mentioning outputs in the definition of canonical traces, one
makes clear that the modul e does not have dependent nondeterminism. By not mentioning
outputsin adefinition of e, one makesit clear that the result does not depend on the output
of the routine (i.e. that the event class has no independent nondeterminism).

Omitting definitions of o0 isno problem asthere is only one possible definition in these
cases. Allowing the omission of definitions of ¢ may not beagood ideaasit isimpossible
to distinguish deliberate omissions from oversights.

3.3.2 Comparison with [Wang 1994] and [Par nas and Wang 1989]

The format used in [Wang 1994] and [Parnas and Wang 1989] for presenting trace specifi-
cations differs from that presented here in afew respects.

In [Wang 1994] and [Parnas and Wang 1989] the definitions of o and e arein separate
sections (there is no equivalent of c) with e coming first. | feel the definition of o on a
particular event classis moretightly connected to the definition of e on the same event
class, than the definition of o on adifferent event class (and similarly with o and e
switched). | have put these next to each other, together with ¢ for the same class, where
they can be easily read together and so they can share the same table, if convenient, as it
oftenis. | put c first sinceit saysfor which events o must alow at least one output; next |
put o sinceit defines the domain of e.

In [Wang 1994] and [Parnas and Wang 1989] variables used in tables and in the definitions
of canonical traces are implicitly existentially quantified. Thisisin conflict with the math-
ematical convention that variables that are freein aformulaare implicitly universally
quantified. It is easy to find examples where both conventions are used in the same for-
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mula. | have chosen to explicitly bind all variables except those that are universally quan-
tified over the whole formula.

In [Wang 1994] and [Parnas and Wang 1989] specia kinds of tables are used for pattern
matching. The meaning of these tablesis less than clear, especially when variables show
up in both the pattern column (or conditions column) and the value column. | have
endeavoured to make pattern matching nothing special, just ordinary math. The priceis
that the pattern matching must often be written twice.

The special error tokens used in [Wang 1994] and [Parnas and Wang 1989] have no ana-
logue in the theory of trace specifications that | have used and thus are not present in my
presentations of trace specifications. Instead, one can use aresult parameter and treat error
tokens like any other part of the output.

In [Wang 1994] it is not clear how different outputs from the same event can be related
and how they in turn are related to the resulting canonical trace. In [Parnas and Wang
1989] the first question is addressed using “output variables’; the second question does
not seem to be fully answered. | have tried to make these interactions clearer without using
output variables. Indeed output variables were originally intended to describe communica-
tion with hardware devices, not to describe nondeterminism. The use of output variable to
describe nondeterminism is discussed further in [Iglewski, Mincer-Daskiewicz, Stencel
1994].

26



CHAPTER 4 Theory and Presentation of
Nonleaf Module Specifications

4.1 Introduction

In Chapters 2 and 3 | introduced a new formalization of trace specifications and a new for-
mat for presenting trace specifications for use in modul e specifications.

The trace specification formalism used in those chaptersis suitable for specifying leaf
modules (modules that do not call other modules apart from submodules). To deal with
modules that are not leaves, there are, as| seeit, two approaches that can be taken: the
module-as-variable view and the module-as-process view. The best way to see the dif-
ference between these is to consider the minimal information needed by a programmer to
implement a module using each of these views. Let us suppose that there are modules A,
B, C, and D making up a complete program with the following client structure:

A

D

Thatis, A isaclient of B and C, and B and C are clients of D. Let us also assume that D
contains state which is affected by calls from both B and C and conversely that the behav-
iour of B and C may be affected by the state of D.

In the modul e-as-variable view, the programmers implementing B and C are given the
specifications for their own modules and that for module D. In the specifications of B and
C, module D istreated as aglobal variable whose value isthe canonical tracer (T) , for T
being the history of D. Global variables are treated by making them both values and
results for each exported routine that may access them. The implementor of B (or C)
requires also the specification of D in order that they may know how the state of D will be
affected by each call they may choose to code. The implementor of B (or C) isfreeto code
any sequence of callsto D that ensures that the final state of D iswhat is required by the
specification of B (or C).

In the modul e-as-process view, the specifications of B and C say exac:tly1 the sequence of
callsto be made to D in each case. D isregarded as a complete cipher for the purposes of
the specification of B and C. The implementors of B and C need not know the specifica-

1. Modulo nondeterminism.
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tion of D and are completely constrained by their own specifications as to how D isto be
made use of.

The module-as-variable model has the advantage of generally ssimplifying the specifica-
tions of B and C. However it has the disadvantage that the specifications of B and C
depend on the specification of D. If the specification of D were to change, for example,
only in the selection of canonical traces, the specifications of B and C would also have to
be changed — even though the implementations would not! There may also be cases
where module D does not have a trace specification. Consider if module D represents a
(human) user of the system. It would be presumptuous to say that two different traces are
the same to the user, thus every trace must be its own equivalence class. Another example
iswhere module D represents the file system. Because of concurrent processes that are
also using the file system, one can not rely on its state remaining unchanged during the
course of the activation of an access program of modules B or C. Again the variable model
isnot so desirable.

The trace assertion method as outlined in Chapters 2 and 3 is capable of expressing speci-
fications in the module-as-variable view. The state of the called module is considered part
of events and part of the output responses. An example will be given in section 4.4.

In the next section we elaborate the trace specification theory to make it suitable for writ-
ing specifications in the modul e-as-process view.

4.2 Running Example

As arunning example in this chapter and the next, | will use a“set” module similar to the
“GetSet” module described earlier. This module will use another module —presumably a
stack— to record additions and deletions to and from the set, so that these can be undone
later. The module has the following informal specification (using the process model):
Generic parameters:

e “A” isatype.

Imported routines are:

e Push: takes pair consisting of atoken —“add”, “delete”, or “noop”— and an object of
type“A”. Thereisno return value.

e Pop: takes no value parameters, and returns a pair of the sort accepted by “push” and a
flag indicating whether the pop was successful.
Exported routines:

e Insert: takesan object “a’ of type“A” and addsit to the set. If the object was already in
the set, it calls “push” with “noop”, otherwiseit calls “push” with “(add, a)”.
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o Get: takes no value parameters. If the set is empty, it calls “push” with “noop”, and
returns“false” asits second result parameter. If the set is nonempty, it returns amember
“a’ of the set asitsfirst result parameter, “true”’ asits second result parameter, and as a
side effect removes “a” from the set and calls “ Push” with “(delete, a)”.

¢ Undo: Takes no value parameters. Calls “pop”. If “pop” is unsuccessful, undo returns
the token “failed”. If the value returned by “pop” is“(add, @)” then “a” is deleted from
the set. If the value returned by “pop” is“(delete, @)”, then “a’ isadded to the set. If the
value returned by “pop” is“(noop, a)”, then no change is made to the set. In all three
cases, “undo” returns the token “undone”.

Notice that thisinformal (but rigorous?) specification is using the process model. It makes
no assumptions about the specifications of “Push” and “Pop” beyond their syntactic inter-
face. In particular, there is no assumption that they behave in a stack-like manner.

4.3 Two-faced Trace Specification Theory

An alphabet A isaset of pairs. A ssimpletrace over an alphabet A isamember gf A A
trace over aphabets A and B is afinite sequence of triples E/S/R where Se B and
E/Re A.Wewrite Traces, g for the set of all traces over A and B.

In modul e specification, one alphabet will be used to represent the calls that can be made
on the module (and their syntactically allowed responses). While another al phabet will
represent the calls that can be made from the module (and their syntactically allowed
responses).

A pre-two-faced trace specification isatuple (ERT, ERB, Can, Init, ¢, 0, e) where
ERT and ERB are alphabets such that rng (ERT) ndom(ERB) = J.Wewill use the
following abbreviations

ET for dom(ERT)

RT for rng (ERT)

EB for dom(ERB)

RB for rng (ERB) .
Continuing: Can isasubset of the set of traces over ERT and ERB, Init e Can,

ce CanxETxERB" ~> Bool |,

oe Canx ETxERB" x (RT U EB) ~> Bool,
(where ~> forms the space of partial functions— | will state the required domains of o
and c in ashort while) and

ee {T;E;SSOe RT: o(T,E,SO) : (T,E,S0O)} — Can.

The alphabets ERT and ERB are called the top alphabet and the bottom alphabet,
respectively, and represent, respectively, the interface a module presents to its clients and
the union of the interfaces of the modules that serve this module. Tracesin Can we call
canonical. The canonical trace Init is called theinitial trace. Functions c, 0, and e are
respectively called the competence function, the output function, and the extension
function. The competence function is used to indicate whether amodule is being correctly
used. The output function is used to indicate the next action the module may take, which
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can either be acall to a server module or areturn. The extension function is used to map
behaviours to canonical behaviours so that the output and competence functions need only
be defined on a (typically small) subset of all possible histories.

The most important function hereis o. It defines what the module might do after each
input from the outside. That isif the history of amoduleis characterized by (T,E, S) —
that is the most recent call to the moduleis E, the history before that time is summarized
by the canonical trace T, and the history of interactions with provider modules since the
most recent call onthemoduleis S—then {X: o(T, E, S X) } istheset of all responses
the module might make. This set may include responses to the caller or calls to provider
modules.

We define a subset of the traces called Feasible, asubset Feas of
Tracesgry grg X ET X ERB’ x (RTUEB), and afunction r € Feasible — Can
together by mutual recursion (on the length of traces):

__ € Feasible ,

(T.(E/S/0) € Feasible) = ((T,E, S O) € Feas) ,

((T,E, _,X) € Feas) = (Te FeasibleAno(r(T),E, _,X)) ,

((T,E,S.(E, O, X) € Feas) =

( (T,E,S,E") € Feasro(r(T),E S. (E, 0, X)
A (Xe RT= (E/X) € ERT) ) ,
r() = Init,
r(r.(e/s/0)) =e(r(MN,SEO) .

Now we can talk about the domains of ¢ and 0. The key idea hereis that we need not
define these functions for impossible situations, i.e. situations that are provably impossible
by looking at the current trace specification only; we make no assumptions about the
behaviour of any other modules. The sets Feas and Feasible make this not too difficult.
Defineasubset D of Canx ET x ERB” by

((T,E, ) e D) = (Te Feasible) |,

((T,E,S.(E,0)) e D) = ((T,E,S,E) € Feas) .
D isthedomain of c and D x (RT u EB) isthedomain of o. Two points should be
made: First, o isused in the definition of Feas and Feasible which in turn are used to
defined the domain of o; the reader should check that this recursion is well founded. Sec-
ond, the complicated domains affect the presentation of trace specifications only in that
they allow the specifier to omit cases that can never arise. Thus the extra complication in
the theory makes the specifiers job easier, not harder.

A two-faced trace specification is a pre-two-faced trace specification that satisfies the
following axioms:

(ts0) (VT;E;S: Te Canac(T,E, S : (IX:: o(T,E,SX))).

(tsl) Init isfeasibleand, if T isintherange of e, then T isfeasible.

(ts2) If T iscanonical and feasible, thenr (T) = T.
In the following we assume we have a two-faced trace specification.

Define the expanded output funct*ion:
0 Feasiblex ETXxERB x (RT U EB) — Bool
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by
0(T,E,SO) = o(r(T),E,SO) .

and the expanded competence function c € Feasiblex ET x ERB — Bool by
C(T,E, S =c(r(T,EYS).

Note that when the bottom al phabet is empty, there is exactly one simple trace over the
bottom al phabet. Thus the set of two-faced trace specifications, such that the bottom
alphabet is empty, isisomorphic to the set of trace specifications as defined in chapter 2.

When writing feasible traces, wewrite T. (E/S/0O).U asT. (E/ /0).U,when Sis
completely determined by T and E, and as T.E. U, when both S and O are determined by
Tand E.

4.4 Presentations

Weillustrate the variable and the process models by presenting the running examplein
both styles. The specification is presented in sans-serif type while comments are in roman

type.

4.4.1 A Process-Model Specification

Module GetSetWithUndolA: type]

Imports:
push val {add, delete, noop} x A
pop res {add, delete, noop} x A | resBool
Exports:
insert va A
get res A res Bool
undo res { undone, failed }
Dictionary:

Matchis T = U.insert(x).V
Canonical Trace:
Can = {xe A" : (Visj i x = X : i =j):(ie {0, ..#x} i insert(x))}

Initialization: Init = _
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Behaviour:

Insert
J1U;V :: Match —(3'U;V :: Match)
o(T,insert(x), ,X) { = push ((noop, X) | X = push((add, x))
o(T,insert(x),<Y),X) || X = () X= ()
e(T,insert(x)) = T T.insert (X)

Get

T#_

T=_

o(T,get( ),_,X) =

(FU;V;x : Match : X=push ( (delete, x) ) )

(Ix :: X=push ( (delete, x) ) )

o(T,get( ),(Y),X) =

(3x :: Y=push ( (delete, x) )
A X= (X true) )

(Ix 2 X=(x, false))

e(T,get( ),S (x,b)) = (U;V: Match: U.V) T
Undo
o(T,undo( ), _,X) = (X=pop( ))
b —b
o(T,undo( ), {pop( )/((c,x),b)),X) = X = undone | X = faled

e(T,undo( ), (pop( )/ ((c.x),b))) =

—b T
c = delete || T.insert (x)

b c = add (U;V: Match: U.V)
c=noop || T

4.4.2 A Variable-Model Specification

Here we respecify the same module using the variable model and trace specifications as
defined in Chapter 2. The state of the stack module is represented by parameters Sand S..
The type of theseis SCan, the type of all canonical traces for the stack.

In this specification, we assume that the stack is bounded by an integer N>0 and that the
stack isreally astack, except that, when it isfull, the oldest item is dropped.

Module GetSet [A: type]

Syntax:

insert | va A

val SCan | res SCan

get val SCan

resSCan | res A

res Bool

undo | val SCan

res SCan

res { undone, failed }
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Dictionary:

Matchis T = U.insert (x).V

Push((c,x)) is

#S =N

#S< N

S = (S (1, ..N)).push((c, X))

S = Spush((c, X))

Popis S=(S- (0, ..#S-1))
Top(c,x) is S,5_;=push((c, X))

undo is
(Ix :: Top(add, x) )

(3x :: Top (delete, x) )

(U;V;x: (Top(add, x) A Match) : U.V )
(X: (Top(delete, x)) : T.insert (X))

(Ix:: Top(noop,x)) T
Canonical Trace:
Can = {xe A" : (Vi}j:x = x1i=]) (e {0, ..#x} i insert(x))}

Notethisisabit of acheat aswe should really include all the value parametersin the
canonical trace. But, as the stack parameter is never used, we will omit mention of it.

Initialization: Init = _

Behaviour:

J1U;V :: Match

—(3'U;V ;. Match)

o(T,insert(x,S)/S) =

(3x 2 Push ((noop, x))) | Push((add, x))

e(T,insert(x,9)) =

T

T.insert (X)

T#_

T=_

o(T,get(S)/(S,x, b)) =

bA (JU;V:: Match) | —=b A (3Ix:: Push((noop, X)))

A Push ( (delete,

X))

e(T,get(S) /(S,x b))

U;V: Match: U.V T

S# S=_
o(T,undo(S) /(S,f)) = Pop A f=undone S=SAf=faled
e(T,undo(9)) = Undo T
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CHAPTER 5 Automata Theoretic Models

One can think of the trace assertion method as being a concise way of presenting automata
with alarge number of states and transitions. The main constraint on the automata
described is that the states be actual histories of the module and that, if the history of a
module happens to be a state, then the state of the automaton is that history. Those histo-
ries chosen as states, are what we have been calling canonical traces. Thisview of trace
specifications has been investigated in [Janicki 95] and [Iglewski, Madey, and Stencel 94].
Both these papers and the present chapter deal with deterministic automata only, in the
sense that for each state and label, there is only one possible next state. Chapter 6 and
[Wang 1994] consider aform of trace specification that would be best modeled with non-
deterministic automata.

The Z and VDM methods of modul e specification may be viewed as having (or being)
similar automata theoretic models, but without any restriction as to the nature of the set of
states used.

5.1 Dichromatic Automata

To keep things simple, we begin by considering a class of automata for modeling trace
specifications as defined in Chapter 2. This caseis similar to those considered in the refer-
ences, but looking ahead to the case where the bottom al phabet is nonempty causes usto
use a more elaborate kind of automata than one might at first think of.

A dichromatic automaton isatuple (ER, B, G, i, bg, gb) where ER is an aphabet (we
abbreviate dom(ER) by ET and rng (ER) by RT), B and G aredigoint sets, i € B,
bge BXET~> G ,
gbe GXRT~>B ,
(where ~> forms the space of partial functions), and, finally,
(Vb0;g;b1;E;O :: bl=gb(bg(b0,E),O) = (E/O) € ER) .
We call the set B the set of black states and the set G the set of green states.

The language L , accepted by the automaton is a set of*traceﬁ defined by recursion
together with afunction Be L, — B, aset LG, c ER x ET and another function
ve LG,— G

_€la,

(T. (E/0) e Ly = ((T,E) € LGy A (Y(T,E), O) e dom(gh)) ,

B =1,

B(T. (E/O)) = gb(y(T,E),O) ,

((T,E) e LGy) = (Te Lya (B(T),E) € dom(bg)) ,

Y(T,E) = bg(B(T),E) .




A trace specification TS = (ER, Can, Init, ¢, 0, €) determines an automaton
DA(TS = (ER Can, G, init, bg, gb) ,

where
G = dom(bg) = dom(gb) = {T;E;O: o(T,E/O) : (T,E)} ,
bg(T,E) = (T,E) ,
gb((T,E),O) = e(T,E/O)) .

Itisclearthat Ly, 15 = Feasible. Itisalso clear that two trace specifications that map
to the same automaton differ only in their competence functions.

5.2 Trichromatic Automata

Dichromatic automata are a mere warm up exercise for the objects we are really interested
in: trichromatic automata, which model two-faced trace specifications. A trichromatic
automaton isatuple

(ERT,ERB,B,G,R i, bg,gb, gr,rg) ,
inwhich ERT and ERB are alphabets (we use the same abbreviations for range and
domain as with two-faced trace specifications), B, G, and R are pairwise digoint sets.
ie B,

bge BXET~>G ,

gbe GXRT~>B ,

gre GXEB~>R ,

rge RxRB~> G ,
with two additional restrictions to be mentioned later. We call R the set of red states.

As before, we can define the language L , of traces accepted by an automaton A. We
defineit simultaneously with sets LG, cTraces ere, ERT X ET X ERB’ and
LR, = Tracesgrg grr X ET X ERB’ ><EB and functionsBe Ly —» B, ye LG, — G
and p € LR, — R. The definitions are:
€ L ,

(T. (AE/S/O) €Ly = ((TLE'S € LGyA (Y(T,E S),0) € dom(gb)) ,

B =i,

B(T. (E/S/0O)) =gb(y(T,E 9, 0) ,

((TLE,_) e LGy) = (Te Lya (B(T),E) e dom(bg)) ,

((T,E,S.(E,R)) e LG, = ( (T,E,S,E) € LR,

A(p(T,E,S,E"),R) € dom(rg) ) ,

Y(T,E,_) =bg(B(M).E) ,

Y(T,E,S.(E,R)) =rg(p(T,E,S,E"),R) ,

((T,EESE) e LRy = ((T,E, S € LGy A (Y(T,E, S, E") e dom(gr)) ,

p(TLESE) =ar(v(T,ES),E) .
| hope the reader will take the time to see that although thislist of definitions looks a bit
intimidating, it consists of only afew ideas used repeatedly. The only complication is that
there are two ways to get to agreen state, from ablack state and from ared state. The addi-
tional restrictions on automata referred to earlier, are now simply stated as

T.(ESO)elL,= (E/O) € ERT
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and
((T,E,S.(E'/R)) e LG, = (E'/R') € ERB .

Thefollowing figureillustrates a portion of atrichromatic automaton constructed from our
running example.

{0,1,2}

push((add, 1)

{0,2 insert(1)

‘ get()

\‘W%O» 0 . (O, tru

push((delete,2))

Q §) >‘ (2,true

pop() ((adwne

((add,0),true)

(delete,1) false)

undo()

{0}

tailed undone

((add,32),fal se) undone

We can generalize our embedding in a straight-forward way. Given atwo-faced trace spec-
ification TS = (ERT, ERB, Can, Init, c, 0, e) , we define a trichromatic automaton
TA(TS) = (ERT, ERB, Can, G, R, init, bg, gb, gr,rg) ,
in which
G={T;E;SX:0o(T,E,SX) : (T,E, S} ,
R={T,E;SE': o(T,E,SE') AOe€ EB: (T,E,SE")}
dom(bg) = {T;E;X: o(T,E, ,X): (T,E)} ,
bg(T.E) = (T,E.) .
dom(gb) {T;E;S;O: 0(T,E,SO) AOe RT: ((T,E, S,0)}
gb((T.E S,0) =e(T,ESO) ,
dom(gr) = {T;E;SE': o(T,E,SE') AE'€ EB: ((T,E S,E")}
or((TLE,S,E) = (LESE) ,

and
dom(rg) = {T;E;SE;0%X: o(T,E S (E/0),X) : ((T,ESFE),0)},
rg((LE SE),0) = (T.E S (E,0))

Asbeforewe have L, 1 = Feasible and that two two-faced trace specifications that

map to the same automaton differ only in their competence functions.
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Note that this construction does not yield aminimal automaton. In fact, it may even create
an infinite state automaton where afinite state automaton would be sufficient.

Conversely, given atrichromatic automaton A we can construct a two-faced trace specifi-
cation using the quotient construction outlined in [Janicki 1994]. Specifically, let A bea
trichromatic automaton (ERT, ERB, B, G, R, i, bg, gb, gr, rg) . Define an equivalence
relationon L,

(T=U) = (W (T.Vely = (UVely).
Let e beany function at all from the equivalence classesof =to L, suchthat € (C) € C,
for al equivalence classes C (i.e. achoice function). Let

Can= {Tel,:e([TI)} ,

Init =e([_].) , -

c(T,E,_) = (B(T),E) e dom(bg) ,
c(T,E,S.(E,0O")) = (p(T,E,SE),O") € dom(rg) ,
o(T,E,S X) = Y(T,E S), X) e dom(gb)

( (
v (v(T,E'S), X) e dom(gr) ) ,
and

e(T,E,S0) = e([T.(E/S/O)].) .

Now Q(A) = (ERB, ERT, Can, Init, c, e 0).
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CHAPTER 6 Exotic Nondeterminism

6.1 An Example

Trace specification theory as presented in Chapter 2 is ableto deal with nondeterminism as
demonstrated in the examples of Chapter 3. Asshown in Chapter 5, the automata theoretic
models, are however still deterministic. Hereisan example module that is quite difficult to
specify using the methods of the preceding chapters. It is a set module with three exported
routines: insert(x) adds x to the set, if it is not already in; remove() removes an arbitrary
member, if the set is nonempty; and in(x) reports on whether x is still in the set.1 The
reader should stop here and attempt to specify this module with the methods presented
above.

Thinking about this from an automata theoretic point of view, one finds that the canonical
traces (black states) used in our earlier “set” modules are the easiest to work with, but that
the automaton must be nondeterministic. In terms of trace specifications, the extension
function must give not one result, but a choice of results.

This leads usto the following...

6.2 Definitions

Anexotic pre-trace specification isatuple (ER, Can, Init, c, 0, e) where ER isaset of
pairs, Can isasubset of the set ER’ of sequences of pairsdrawn from ER, Inite Can,
ce Canxdom(ER) — Bool,
o0e Canx ER— Bool,
and
ee {T;E;O;T': o(T,E/O) : (T,E/O,T") } — Bool.

The difference is in the extension function, which is now a characteristic predicate for a
set of next states.

We define Feasiblec ER™ and r € Feasible — 22" by recursion:
__ € Feasible ,
r() = {Init} ,
(T.(E/O) € Feasible) = (Te Feasiblean (3Cer(T) :: 0(C,E/Q0))) ,
r(tT.(e/0)) = (UCer(T):0(C,E/O) : {T':e(C,E/O, T)}) .

1. Thisexample wastold to me by David Parnas, who heard it from Yabo Wang.
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An exatic trace specification is an exotic pre-trace specification that satisfies the follow-
ing axioms:

(ts0a) (VT,E: Te Canac(T,E) : (30:: o(T,E/O)))

(tsOb) (VT;E;O: Te Canao(T,E/O) : (AT :: e(T,E/O, T)))

(tsl) Init isfeasibleand, if T"issuchthat (dT;E;O :: e(T,E/O, T")) thenT'is
feasible.

(ts2) If T iscanonical and feasible, then Te r (T).
The theorems and definitions to follow assume we have an exotic trace specification.

Define the expanded output function: 0 € Feasible x ER— Bool by
0(T,E/0) = (ICer(T) :: 0(C,E/0))

and the expanded competence function ¢ € Feasible x dom(ER) — Bool by
C(T,E) = (VCer(T) = c(CE)) .

6.3 Theorems

We can now prove theorems analogous to those in Chapter 2.
LemmaO: If T isfeasible, then r (T) isnonempty.

Proof: by induction on the length of T. The base caseistrivial. The induction case:
Let T. (E/O) befeasible, by the definition of feasible we know that T isfeasible and that
(ACe r(T) :: 0(C,E/O)) . Now we prove
r(T.(e/0)) #{ }
= {definition of r}
(UCer(T) :0(C,E/O) : {T:e(CE/O,TH})#{ }
= { set theory}
(3Cer(T) : 0(C,E/O) : {T':e(C,E/O, TY)}#{ })
= { set theory}
(3Cer(T) :0(C,E/O) : (qT':: e(C,E/O, T)))
= {ts0b}
(ACer (T) : o(C,E/O) : true)
= {trading}
(ACer (T) : 0(C,E/O))
= {from definition of feasible}
true
QED

Theorem 0: If T isfeasible, then, for any event E such that ¢ (T, E) , thereisan O such
that T. (E, O) isfeasible.

Proof: Let T befeasible and E be any event such that ¢ (T, E) . By Lemma0, we know
that r (T) isnonempty. Let C be any member of r (T) . Now we prove the consequent
(A0 :: ((T.(E, O)) € Feasible))
= {Definition of feasible}
(3O :: Te Feasiblea (ACer(T) : 0(C,E/Q)))

39



= {Assumptionthat T isfeasible}
(30 :: (dCer (T) = 0(C,E/O)))
< {Generdization}
(30 : 0o(C,E/O))
& {(ts0a)}
c(C,E)
& {Définition of c}
c(T, E)
= {Assumption}
true
QED

Theorem 1: If T isamember of asetintherangeof r, then T isfeasible.

Proof: By the definition of r, T iseither init or such that
0(C,E/O) ne(C,E/O, T)

for some canonical C. In either caseitisfeasibleby (tsl).

QED

Theorem 2: For any trace T', (T'e Cann Feasible) = (T T er(T)).

Proof: The <« direction follows from the type of r and from Theorem 1.
The = direction followsfrom (ts2).
QED

For feasible T and U, define T=U iff r (T) = r (U) . Thisequivalencerelationiscalled
specification equivalence.

Theorem 3: There does not appear to be adirect analogue of Theorem 3 from Chapter 2.
Theorem 4: T=U implieso(T,E/O) = 0(U,E/O) and c(T,E/O) = ¢ (U, E/O).
Proof is direct from the definitions.

Theorem 5: If T=U,and T.V and U.V are both feasible, then T.V=U.V.

Proof is by induction on the length of V. The base caseistrivial. For the inductive case
assumethat V = W. (E/O) (for some W, E, and O). Since W is shorter than V (and
noting that T.W and U.W are both feasible) we have by the induction hypothesis that
T.W=U.W. Now to prove the consequent:
r(T.v)
= {V=W.(E/O)}

r(T.W.(E/70))

{ Definition of r}
(UCer(T.W) : o(C,E/O) : {T': e(C,E/O, T) })

{T.W=U.W}
(UCer(UW) :o(CE/O): {T:e(C,E/O,T)})

{ Retracing our steps}
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r(u.v
QED

The extensions of afeasibletrace T istheset {V : T.V € Feasible} . Two feasible
traces are said to be obser vationally equivalent (written T = U) iff they have the same
extensions.

Theorem 6: Specification equivalence is a refinement of observational equivalence. That
is

T=U=T=U
for al feasible T and U.

Proof: Let T and U befeasible traces such that T=U. Let V be amember of the set of
extensions of T. We need only prove (by induction on the length of V) that V isaso an
extension of U. The base case is easy. For the induction case we assume that
V = W. (E/O), forsome W, E, and O. Since T.V isfeasible, T.W isaso feasible. By
induction we have that U.W isfeasible. From Theorem 5, we have T.W=U.W.
true
= {By assumption.}
T.Visfeasible
= {V=W.(E/O)}
T.W. (E/O) isfeasible
= {Definition of feasible}
T.We Feasiblea (3Ce r (T.W) 1 0(C,E/O))
{ TW isfeasible}
(ACer(T.W) :: 0(C,E/O))
{T.W=U.W and definitionof = }
(ACer(U.W) 1 0(C,E/O))
= {retracing our steps}
U.V isfeasible

QED

6.4 Presentation

An example should suffice to show the analogue of the presentation format of Chapter 3.
Thisis a specification of the module described at the start of this Chapter.

Module ExoticSet[A: type]

Syntax:

insert va A

delAny

in val A res Bool
Dictionary:

Matchis T = U.insert(x).V
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Canonical Trace:

Can = {xe A : (Visj:x=x:i=]): (e {0, ..#x}
Initialization: Init = _

Behaviour:

e(T,insert(x),T") =

JU;V :: Match T=T

—(3U;V :: Match) = T.insert (x)

=
|

e(T,delAny( ), T") =
T# || 3U;V;x: Match: T'=U.V
T=_[T=T

o(T,in(x)/b)

(b= (3U;V :: Match))
e(T,in(x), T) = (T'=T)

End of Module Set

insert(x;) )}
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CHAPTER 7 Concluding Remarks

7.1 Further Work

7.1.1 Nonleaf Modules

Chapter 4 presents two approaches to nonleaf modules. Neither seemsto meto be entirely
satisfactory. Some situations may call for the variable approach, others for the process
approach. There may be other situations in which some other approach is called for.

7.1.2 Automata Theory of Exotic Nondeter minism

Nondeterministic di- and trichromatic automata could be defined.

7.1.3 Datarefinement

The proof of one trace specification refining another or of a program or automaton imple-
menting a trace specification has not been addressed in this report. The methods of [Hoare,
He, and Sanders 1987] should be applicable.

7.1.4 Multiple Objects

Some modules implement multiple similar objects. Consider a modul e that manages a
number of sets of the sort described in our “Set” module. It seems a pity to throw away the
clean single object trace specifications in such a case. One proposal isto project the trace
of the module onto those calls that are relevant to a particular object. Thisisfinein the
case where the objects have no interaction. In cases where they have some interaction (e.g.
competition for limited resources) there is some question as to how to specify them.
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