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Abstract: In this report I explore some ideas for formally specifying modules based on
the trace assertion method outlined in, for example, [Parnas and Wang 1989].

These ideas include:

• A formal mathematical theory of trace specifications which is independent of their
intended application to module specification (Chapter 2).

• Some ideas on presenting module specifications (Chapter 3).

• A theory of trace specifications for dealing with modules that call other modules (Chap-
ter 4).

• Automata theoretic models for trace specifications of the sort defined in Chapter 4
(Chapter 5).

• A theory of trace specifications for cases where deterministic automata are not suitable
models (Chapter 6).
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CHAPTER 1 Introduction and Notation

1.1  Introduction

The trace assertion method should be set on firm mathematical foundations and presenta-
tions of trace specifications should use a minimum of mathematical notation peculiar to
trace specifications. This short report presents some ideas for achieving these goals. It
builds on the ideas in [Wang 1994], [Parnas and Wang 1989], and [Iglewski, Madey, and
Stencel 1994]. Although this report is intended to be self contained, readers not familiar
with the earlier work on trace specifications will likely find the introductory material a lit-
tle brisk.

The structure of this report is a theme and variations. The theme is set in Chapter 2 with a
simple mathematical theory of trace specifications. From there the reader can explore the
other chapters in virtually any order.

The reader interested in presentations of trace specifications will go to Chapter 3.

The reader interested in the specifications of modules that use other modules may want to
skip to Chapter 4, although the presentations used as examples depend on Chapter 3.

The reader interested in automata theoretic models can skip to the first part of Chapter 5.
The second part presents models for the theory in Chapter 4.

The reader interested in further exploring nondeterminism may want to skip straight to
Chapter 6, although the example presentation depends on Chapter 3.

The original motivation for this report came from teaching trace specifications to third
year undergraduate engineering students. I found that the mathematical notations used in
published descriptions of the trace assertion method were too particular to the trace speci-
fications. Instead of introducing new notations, I wanted to teach the method. Luckily I
found that the notations the students had already been taught — standard notations from
predicate calculus and set theory — together with simple tables were quite adequate and,
in some ways, superior for expressing trace specifications.

The improvements, if improvements they be, are two-fold. First the underlying theory is
slightly different from that in previous work, and is spelled out in the form of an axiomatic
theory. Second there are cosmetic changes to the presentation of trace specifications.

The value of trace specifications is not just that they form a nice theory, but that they can
actually be used to document programs at the locations where documentation can be most
effective: i.e. at module interfaces. It is therefore important that trace specifications be as
readable as possible. So any changes to the presentation of trace specifications that
enhances their readability are desirable.
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The main changes to the theory are an extension to cover cases where the empty trace is
not canonical and a new way of expressing misuse of modules. The theory here, as in
[Iglewski, Madey, and Stencel 1994] and [Janicki 1995], and in contrast to [Wang 1994]
and [Parnas and Wang 1989], treats nondeterminism by putting the selection of responses
prior to the selection of a next canonical trace.

The main changes to the presentation of trace specifications that I propose are (a) the use
of simple tables with no odd rules about quantification and (b) the reduction of pointless
repetition. There are also minor notational clarifications. For example, trace specifications,
as presented in earlier papers, have used variables which are implicitly quantified over
limited scopes. Such notational quirks all contribute to making trace specifications a little
mysterious to the uninitiated.

1.2  Some Notational Matters

The examples and discussion that follow will require some notation for mathematical
objects and operations. Therefore, this section introduces that notation that is not entirely
standard in mathematics. Most of the particular notations introduced are not closely tied to
the other aspects of this paper, so if you like them, use them, if you don’t, then please bear
with me.

1.2.1  Segments and Sequences

Segments of the integer numbers are often useful, so I will use the abbreviation:
.

Note the asymmetry. A function with domain  (for some natural ) is called a
finite sequence of length . I will abbreviate the set of all finite sequences of length
with ranges included in  —i.e. — by  The set of all finite sequences
with ranges included in  —i.e. the union of all  for — is written . The unique
member of  is written as , and the unique member of  as . The catenation of
finite sequences  and  is written as , and a catenation  is written

.

Since transfinite sequences will not be used in this paper, I’ll just say “sequence” when
“finite sequence” would be more proper.

The length of a sequence  is written as ; for example . The sequence
of length  that maps its argument to  plus the argument is written ; for exam-
ple . A sequence composed with a sequence gives a sequence
of results like this . An identity using all three of these
notations is

Two slight abuses of notation will be tolerated when dealing with sequences. First, if it is
clear that  is not a sequence, then it is ok to write  rather than  when it is clear that a
sequence is required; e.g.  should be understood to mean . Second, the appli-
cation of a sequence to an argument may be written as  rather than .

i ... j,{ } k ints : i k≤ j<∈{ }=
0 ... n,{ } n

n n
X 0 ... n,{ } X→ Xn

X Xn n 0≥ X*

X0 _ x{ } 1 x〈 〉
T U T. U a〈 〉. b〈 〉. c〈 〉

a b c, ,〈 〉

T # T # a b c, ,〈 〉 3=
j i− i i ... j,〈 〉

13 ... 16,〈 〉 13 14 15, ,〈 〉=
T x y z, ,〈 〉⋅ T x( ) T y( ) T z( ), ,〈 〉=

T 0 ... # T,〈 〉⋅ T=

x x x〈 〉
s. 1. t s. 1〈 〉. t

Ti T i( )
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1.2.2  Variable Binding Constructs

Quantified formulæ will be written as, for example,  with  being a
set,  being a formula that further restricts  and  being a formula. More than one vari-
able can be bound, for example . Quantified terms follow the
same pattern except  is replaced by a term. For example .

Three abbreviations are used in quantified formulæ and terms, and in comprehensions.

• The condition  may be omitted in which case it defaults to . For example:
.

• The set  may be omitted (together with the ∈) in which case it defaults to the largest
set that makes  and  (or ) well defined. For example, if the domain of  is the
integers, the term  abbreviates

.
This abbreviation should be used with care.

• Finally,  may be omitted (together with the preceding colon), in which case the default
is . For example,  is minimum prime greater than . This
abbreviation only makes sense if a single variable is being bound.

At times it is easiest to describe an object by stating a property of it that uniquely identifies
it. For example, the positive square root of two is simply described as “that positive num-
ber which when squared yields 2.0”. Using common mathematical notation, it is easy,
using set comprehension notation, to describe the singleton set containing only the posi-
tive square root of 2 as

.
But, this is not what is wanted; we want the sole member of this set. We will use the nota-
tion  to mean the sole member of the set . Thus we can write the
positive square root of 2 as

.
If the set expression  is undefined or is defined, but not a singleton, then the
expression  is undefined. We call this notation solution comprehension.

Set comprehension notation can be generalized to be analogous to quantified terms.
 will be the set of all things obtained by replacing variable  in term

with a value from  such that  is satisfied. We can define such three-part set comprehen-
sions in terms of two-part comprehensions

(where  is not free in  or ). Solution comprehensions are generalized the same way. So
for example  will be, if defined, the
common last name of all people with 120884908 as SIN. In both solution and set compre-
hensions, it makes sense to allow more than one variable to be bound.

A lambda expression is written as  and denotes that function  with
domain , such that  equals  —i.e.  with  replaced by — for all  in
the domain. For example, the function that maps even integers to their successors might be
written . Since we are modeling finite sequences with func-

! x X∈∃ : R : P( ) X
R x P

x X∈ y Y : R : P∈;∀( )
P Σx X∈ : R : t( )

R true
Σx X∈ :: f x( )( )

X
R P t even

Σx : even x( ) : 1 x⁄( )
Σx int 0{ }−∈ : even x( ) : 1 x⁄( )

t
x min i Primes∈ : i j>( ) n

x ℜ : x 0≥ x2 = 2∧∈{ }

x X : R∈( ) x X : R∈{ }

x ℜ : x 0≥ x2 = 2∧∈( )
x X : R∈{ }

x X : R∈( )

x X : R∈ : t{ } x t
X R

x X : R∈ : t{ } y : x X∈ : R : y = t∃( ){ }=
y R t

i Indecies∈ : SIN i( ) = 120884908 : lname i( )( )

x X : R∈ : t〈 〉 f
x X : R∈{ } f c( ) tc

x t x c c

i int∈ : even i( ) : i 1+〈 〉
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tions, lambda expressions make a concise way to write sequences that obey some rule, for
example  can be written as . In this paper that is
the only use that will be made of lambda expressions, and we will call this special case
sequence comprehension.

1.2.3  Cartesian Products

Given a sequence of sets , we write the Cartesian product of  as  or equivalently as
.

The members of this set are written . Note that for any set , we have
, and that  —  being the empty tuple. I will sometimes write
 rather than , especially when dealing with “event-response” pairs

(defined later).

1.2.4  Tables

A one-dimensional normal function table consists of a list of formulæ and a list of terms
(of equal length). A normal function table is a term. In any state (assignment of values to
the free variables), the table is undefined unless exactly one of the formulae is true. Other-
wise the value of the table is the value of the corresponding member of the term list. For
example the table

equals , , or  depending on whether  is equal, less than, or greater than .

A different sort of table is the vector equality table. An example vector equality table is

which is interpreted as the formula
.

Any terms may appear in the row header. The formulae that appear in the column header
must be such that exactly one is true in any state.

1.2.5  Try-else

I define “ ” to equal  when  is defined and to equal  when  is undefined.
For example: “ ” equals .

0 1 4 9 16 25 36, , , , , ,〈 〉 i 0 ...7,{ }∈ :: i2〈 〉

S S ΠS
S0 S1 ... S# S 1−×××

a b ... c, , ,( ) A
Π A〈 〉 A= Π_ ( ){ }= ( )
a b ... c⁄⁄⁄ a b ... c, , ,( )

a b= 0
a b< a−
a b> + a

0 a− + a a b

a b= a b< a b>
s = u v w
t = x y z

a = b s = u t = x∧ ∧( ) a b< s = v t = y∧ ∧( ) a b> s = w t = z∧ ∧( )∨ ∨

try x else y x x y x
try 5 0÷ else 9 9
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1.2.6  Discussion

Modeling sequences as functions is a matter of notational and conceptual economy. It has
the disadvantage of requiring a higher order logic in order to quantify over sequences. One
could equally well introduce sequences as first-order objects as is done in [Parnas 1994].

Having a uniform syntax for quantifiers and comprehensions is again a matter of nota-
tional economy. It is tempting to introduce some semantic uniformity as well, noting that
many quantifiers (e.g. universal, existential, summation, maximum, etc.) are related to
binary operators (e.g. ∧, ∨, +, max) in analogous ways. But some of the quantifiers (exists
unique, for example) do not fit this patterns.

Of the abbreviated forms of variable binding, the omission of the set  is the only one that
can cause trouble. As mentioned, it should be used with discretion. The abbreviation only
makes sense when a unique set is determined. For example  does not make
sense, unless one is assuming some closed universe.

The 3-part set comprehension notation can be found in the Z language [Spivey 1987] and
even in at least one discrete math textbook [Gries and Schneider 1993], it is closely related
to the axiom of replacement in Zermelo-Fraenkel set theory. The notation is only of mar-
ginal usefulness in trace assertion specifications, but it provides a nice stepping stone to 3-
part solution comprehensions, which are of great usefulness in specifications.

The solution comprehension is rarely used in mathematical writing. It has been indepen-
dently rediscovered a number of times, with subtle differences in the treatment of the
undefined cases. Russell and Whitehead may have been the first [Russell and Whitehead
1910]. In the Z language it is called “definite description” [Spivey 1987]. It is also very
similar to the “let” and “solutions” constructs introduced in [Norvell and Hehner 1993], to
the demonic choice quantification of [Ward 1994], and to the epsilon function used by Hil-
bert [Bernays 1935]. When  is a singleton and  is , it is equivalent to the “let” con-
struct found in many functional languages. The recommended English reading of

 is “let  in  such that  in ” or “  where  in  is such that  and for
, “that  in  such that ”.

Normal function tables are introduced in [Parnas 1992]. Vector equality tables are inspired
by table types in the same report, but differ in detail from all of them.

The try-else construct is similar to that introduced in [Norvell and Hehner 1993].

X

x : x x∉{ }

X R true

x X∈ : R : t( ) x X R t t x X R
x X∈ : R( ) x X R
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CHAPTER 2 Theory of Leaf Modules

2.1  Introduction

Shortly I will present a mathematical theory of trace specifications entirely divorced from
its application to module specifications. However to aid the reader, I will first mention
how the theory will be used. A trace specification —as will shortly be defined— consists
of six mathematical objects.

• An alphabet  of event-response pairs. Each member of  is a pair  where
is a call to a module (the name of an access program together with the values of all
value parameters and global variables that might be read by the module) and  is a pos-
sible response of the module. By “possible” what is meant is syntactically possible. For
example, if an access program  takes a single integer value-result parameter, then
for all integers  and , the pair  should be in . The domain of  will
be called the set of events and the range of  will be called the set of outputs or
responses.

•  is a a set of traces. Each member of  is a representative of a set of traces that
all lead the module to states that are indistinguishable from each other by any future
experimentation.  is called the set of canonical traces.

•  is a canonical trace that represents the initial state of the module. It is called the
initial trace.

•  is a function that indicates when a particular call to the module is a proper usage of
the module. It is called the competence function.

•  is a function that indicates what responses the module might make to any call. It is
called the output function.

•  is a function that indicates what canonical trace represents the trace that results from
adding an event/response pair to a trace. It is called the extension function.

In addition to these undefined terms, we will define a set of feasible traces  that
consists of all the traces that might arise from the usage of a module, and a reduction
function  that reduces any feasible trace to a canonical one.

2.2  Basic Definitions

A pre-trace specification is a tuple  where  is a set of pairs,
 is a subset of the set  of sequences of pairs drawn from , ,

,
,

ER ER E R⁄ E

R

inc
i j inc i( )( ) j⁄ ER ER

ER

Can Can

Can

Init

c

o

e

Feasible

r

ER Can Init c o e, , , , ,( ) ER
Can ER* ER Init Can∈

c Can dom ER( )× Bool→∈
o Can ER× Bool→∈
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and
.

We define a subset of the traces called  and a function
together by mutual recursion (on the length of traces):

A trace specification is a pre-trace specification that satisfies the following axioms:
(ts0) .
(ts1)  is feasible and, if  is in the range of , then  is feasible.
(ts2) If  is canonical and feasible, then .

The theorems and definitions to follow assume we have a trace specification.

Define the expanded output function:  by

and the expanded competence function  by
.

2.3  A Few Theorems About Trace Specifications

Theorem 0: If  is feasible, then, for any event  such that , there is an  such
that  is feasible.

Proof: Immediate from (ts0) and the definition of feasible.
QED

Theorem 1: If  is in the range of , then  is feasible.

Proof: Let  be in the range of . From the definition of ,  is either  or in the range
of . In either case, it is feasible by (ts1).
QED

Theorem 2: The range of  is .

Proof: From the type of  we know its range is contained in  and from theorem 1 that
its range is contained in , so . Let  be in

. By (ts2) it is in the range of . Thus .
QED

For feasible  and , define  iff . This equivalence relation is called
specification equivalence.

e T E; O; : o T E O⁄,( ) : T E O⁄,( ){ } Can→∈

Feasible r Feasible Can→∈

_ Feasible∈
r _( ) Init=

T. E O⁄( ) Feasible∈( ) T Feasible∈ o r T( ) E O⁄,( )∧( )=
r T. E O⁄( )( ) e r T( ) E O⁄,( )=

T E; : T Can c T E,( )∧ : O :: o T E O⁄,( )∃( )∈∀( )
Init T e T

T r T( ) T=

õ Feasible ER× Bool→∈
õ T E O⁄,( ) o r T( ) E O⁄,( )=

c̃ Feasible dom ER( )× Bool→∈
c̃ T E,( ) c r T( ) E,( )=

T E c̃ T E,( ) O
T. E O,( )

T r T

T r r T Init
e

r Can Feasible∩

r Can
Feasible ran r( ) Can Feasible∩⊆ T

Can Feasible∩ r Can Feasible∩ ran r( )⊆

T U T U≡ r T( ) r U( )=
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Theorem 3: If  is feasible and canonical and , then
.

Proof. Let  be feasible and canonical, and  and  be such that . By (ts1)
we have , thus by the definition of feasible, we have that  is fea-
sible and hence in the domain of .

 {defn }

 {(ts2)}

 {By (ts1) this expression is feasible. Apply (ts2).}

QED

Theorem 4:  implies  and .

Proof:

 {defn }

 { }

 {defn }

And likewise for .
QED

Theorem 5: If , and  and  are both feasible, then .

Proof is by induction on the length of . The base case is trivial.

Inductive Case: We can assume that  (for some ,  and ). Since  is
shorter than  (and noting that  and  must both be feasible) we have, by the
induction hypothesis, that .

 { }

 {defn of }

{ }

 {retracing our steps}

QED

T o T E O⁄,( )
T. E O⁄( ) e T E O⁄,( )≡

T E O o T E O⁄,( )
o r T( ) E O⁄,( ) T. E O⁄( )

r
r T. E O⁄( )( )

= r
e r T( ) E O⁄,( )

=
e T E O⁄,( )

=
r e T E O⁄,( )( )

T U≡ õ T E O⁄,( ) õ U E O⁄,( )= c̃ T E O⁄,( ) c̃ U E O⁄,( )=

õ T E O⁄,( )
= õ

o r T( ) E O⁄,( )
= T U≡

o r U( ) E O⁄,( )
= õ

õ U E O⁄,( )
c̃

T U≡ T. V U. V T. V U. V≡

V

V W. E O⁄( )= W E O W
V T. W U. W

T. W U. W≡
r T. V( )

= V W. E O⁄( )=
r T. W. E O⁄( )( )

= r
e r T.W( ) E O⁄,( )

= T. W U. W≡
e r U. W( ) E O⁄,( )

=
r U. V( )
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The extensions of a feasible trace  is the set . Two feasible
traces are said to be observationally equivalent (written ) iff they have the same
extensions.

Theorem 6: Specification equivalence is a refinement of observational equivalence. That
is

,
for all feasible  and .

Proof: Let  and  be feasible traces such that . Let  be a member of the set of
extensions of . We need only prove (by induction on the length of ) that  is also an
extension of .

Base Case: Suppose that .
 is feasible

 { }
 is feasible
 {by assumption}

true

Inductive Case: We can assume that  (for some ,  and ). Since
is feasible,  is feasible and as an induction hypothesis  is an extension of  so we
have  is also feasible.

true
 {by assumption}

 is feasible
 { }

 is feasible
 {defn of feasible}

 {  is feasible}

 {defn }

 {theorem 5 ( ) and theorem 4}

 {retracing our steps}
 is feasible

QED

T V : T. V Feasible∈{ }
T U≅

T U≡ T U≅⇒
T U

T U T U≡ V
T V V

U

V _=
U. V

= V _=
U

=

V W. E O⁄( )= W E O T. V
T.W W U

U. W

=
T. V

= V W. E O⁄( )=
T. W. E O⁄( )

=
T. W Feasible∈ o T. W E O⁄,( )∧

= T. W
o r T. W( ) E O⁄,( )

= õ
õ T. W E O⁄,( )

= T. W U. W≡
õ U. W E O⁄,( )

=
U. V
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2.3.1  Support for the theorems

The following diagram shows how these theorems are supported by the axioms.

The interesting thing is that Theorems 4, 5, and 6 are true of pre-trace specifications.

2.4  Determinism

It often happens that for feasible trace  and event  there is a unique  such that
. In this case, we will generally take the liberty of writing any feasible trace

 as , since the output component is redundant.

In presentations of trace specifications, we will leave out redundant output components
even in the definitions of , , , and .

2.5  Discussion

The intended use of trace specifications is to specify or to describe the behaviour of leaf
modules, that is modules that call no modules themselves. The events are just calls to the
module’s exported routines (access programs in the terminology of [Parnas and Wang
1989] and [Iglewski, Madey, and Stencel 1994]) and the outputs are the results returned
from the exported routines. In the case of a specification, the set of feasible traces, derived
from a trace specification, documents the allowed behaviour of the module. I say allowed
behaviour because the actual behaviour may be less nondeterministic than the documented
behaviour. The expanded competence function specifies those calls which are valid uses of
the module. In the case of a description, the set of feasible traces documents the possible
behaviour of the module.

The presentation of trace theory above is based very much on [Iglewski, Madey, and Sten-
cel 1994]. I have used a characteristic function rather than a relation for outputs in order to
make it easier to define them simultaneously with the extension function (discussed
below). The competence function is new as is .

The axioms and theorems are new. Axiom (ts0) is an axiom of excluded miracles. Axioms
(ts1) and (ts2) are primarily intended to ensure a correspondence between external obser-

(ts0)

Thm 0

(ts1)

(ts2)
Thm 1

Thm 2

(ts1) (ts2)

Thm 3

Thm 4 Thm 5

Thm 6

T E O
õ T E O⁄,( )
T. E O⁄( ) . U T. E. U

Can c e o

Init
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vations and the abstract states of the module. Without this, the trace specification method
devolves into an artificially constrained form of model-based specification. For example,
for any trace specification, there is a pre-trace specification that uses in place of each
canonical trace its reverse. This pre-trace specification violates (ts2). Axiom (ts2) is an
axiom of realism.

Axioms (ts1) and (ts2) are a little ugly as they involve derived concepts (feasibility and the
reduction function ). However, in practice, I don’t think they will be hard to check or
hard to meet. These axioms can probably be simplified in the cases where .

The most important theorem is theorem 6; it states the soundness of the method. Theorem
6 is proved without using the axioms at all. Thus the purpose of the axioms is to ensure
realism and miracle exclusion, but not soundness.

I have not insisted that specification equivalence and observational equivalence be equal.
This is because making the set of canonical traces small enough that there is a unique
canonical trace in every observational equivalence class can make definitions unnatural.
Consider —as we will in Chapter 3— a generic set module. The usual way of making the
set of canonical traces so small that it contains exactly one representative of each observa-
tional equivalence class is to admit only traces sorted by some total order as canonical. But
the use of an order to describe a set module seems to me to be artificial. The disadvantage
of the approach taken here is that correct implementations may not by provable using the
abstraction function technique. This problem can be avoided by using an abstraction rela-
tion which relates each state to each canonical trace that it might represent.

None of the sets of events, outputs, or canonical traces are required to be finite. If they are
finite, that’s ok, but the specification method works equally well for modules with an infi-
nite number of states.

Another reasonable restriction that I have not made would be to insist that all canonical
traces be feasible. This would simplify the theory slightly and likely not inconvenience
anyone. On the other hand, allowing canonical traces that are not feasible seems only to
have the effect of forcing one to pedantically state that a trace is not only canonical but
also feasible. Annoying, but not harmful.

The competence function does not restrict the range of the output, so the specifier must
still specify what outputs are valid for an invalid event. The occurrence of an event such
that the competence function is false is called ‘incompetent’ use of the module. Various
interpretations are possible for what the module should “do” when used incompetently:

• In the LD interpretation the module may either loop forever or return from the call,
but, if the call is returned from, the output must be as specified by the expanded output
function.

• In the VDM interpretation, anything at all may happen.

r
Init _=
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• In the firewall interpretation, it is incumbent on the module to “notice” the problem
and to cause some remedial action to take place. The remedial action might consist of
printing an apologetic message and shutting down the system, calling on some emer-
gency code to restore consistency, or something else that is appropriate to the applica-
tion. In any case, the error should not go unreported.

Regardless of the interpretation taken, it is the responsibility of the programmers of all cli-
ents of a module to ensure that events that make the competence function false do not hap-
pen (unless the client module itself is used incompetently).
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CHAPTER 3 Presentation of Leaf Module
Specifications

3.1  Trace specification documents

The purpose of a trace specification document is to present a trace specification and to
connect the events and outputs defined in the trace specification with the actual code of a
system. It is important not only that the presentation of the trace specification be complete
and unambiguous, but also that it be as easy to read as possible.

I will divide trace specification documents into the following sections:

• Introduction: The name of the module and a description of module parameters.

• Syntax: Definition of .

• Dictionary: Definition of auxiliary functions, predicates, and macros.

• Canonical Traces: Definition of .

• Initialization: Definition of .

• Behaviour: Definition of ,  and .

3.1.1  An Example

Module Set[  : type]

The module is called “Set” and is generic over all types .

Syntax:

The module has three exported routines. The first parameter of each is a value parameter
of type  and the second parameter of routine “in” is a result parameter of type bool.

Each exported routine gives rise to a set called an event class. The three event classes here
are , , and .
(Note that these are three-part set comprehensions.) Each routine name acts as a function
from the space of its value parameters to some set (it doesn’t matter what set, as long as

insert val

delete val

in val res Bool

ER

Can

Init

c o e

A

A

A
A
A

A

a A∈( ) :: insert a( ){ } a A∈( ) :: delete a( ){ } a A∈( ) :: in a( ){ }
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it’s big enough). We assume that each of these functions is one-one (injective) and that
their ranges are (pairwise) disjoint. Let us call the event class associated with a routine ,

.

Each exported routine also gives rise to a set called a response class. The response classes
are formed by tupling the result parameters. In this case, the three response classes are

, , and . Let us call the response class associated with a routine ,
.

Let  be the set of all exported routines, the alphabet of our trace specification is simply
.

There is no problem with value-result parameters. They simply contribute to both the
event class and the response class. It is a good convention to list value parameters first,
then value-result parameters, and finally result parameters.

Dictionary: None

In this case, there are no definitions to be made. Definitions can be of predicates or func-
tions, or they can be simply be “text macros”.

The dictionary is placed here because it will likely make use of the event and output sets
and because the functions defined here may be of use in any of the subsequent sections —
declaration before use.

Canonical Trace:

I have decided to use a direct definition of the set. One could instead give the characteristic
formula of the set. E.g.

Either way seems reasonable.

Initialization:

This is the common case. The exception is when _ is not canonical. Although this case is
common, it is also short, so I suggest it not be made a default.

Behaviour:

The behaviour section presents the routines in the order given in the syntax section. For
each routine we must define , , and  for each event class.

x
ECx

( ){ } ( ){ } Bool x
RCx

X
ER ∪ x X∈ :: ECx RCx×( )=

Can x A*∈ : i j; : xi = xj : i = j∀( ) : i 0 ... # x,{ }∈ :: insert xi( )〈 〉{ }=

T Can∈( ) x A# T∈∃ : i j; : xi = xj : i = j∀( ) : i :: Ti = insert xi( )∀( )( )=

Init _=

c o e

e T insert x( ),( ) =

i :: Ti = insert x( )∃ T
i :: Ti = insert x( )∃( )¬ T. insert x( )
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For “insert” I did not define . The reason is that “insert” events are associated with
exactly one output, namely . I also did not define  for this event class. We will adopt
the convention that if  is not mentioned for a particular event class then it is by default
defined to be true for all canonical traces and events in the class.

The eagle eyed will have noticed that second argument of  has the wrong type. Strictly,
the left hand side of the equation should begin with . We will use
the convention that if the response part of the second argument to  is not used, it will be
omitted.

The use of  makes it clear that the solution comprehension is well defined. Looking at
the definition of “canonical”, it is clear that  could also have been used.

The definitions for “in” show a nontrivial response class. Thus we give a formula defining
 for this event class, but as the response is not used in the definition of , we omit it.

End of Module Set

3.1.2  Pattern Matching

In [Wang 1994] and [Parnas and Wang 1989] much use is made of pattern matching.
Rather than directly supporting pattern matching with any new notations, one can adopt a
pattern matching style. The Set module just presented could also be presented in pattern
matching style as follows.

In the Dictionary section we define a macro:

 is

(By a “macro” I mean that wherever we see the word Match in the specification, we
should mentally replace it with the left hand side. In particular this means that the free
variables ( , , , and ) receive their bindings at that time. Conversely we should not
reckon the free variables of any formula without first performing macro expansion.)

In the Behaviour section we define.

o
( ) c

c

e
e T insert x( )( ) O⁄,( )

e

e T delete x( ),( ) =

! i :: Ti = insert x( )∃ i : Ti = insert x( ) : T 0 ... i,〈 〉⋅( ) . T i 1+ ... # T,〈 〉⋅( )( )
! i :: Ti = insert x( )∃( )¬ T

!∃
∃

o T in x( ) b⁄,( ) b = i∃ :: Ti = insert x( )( )( )=

e T in x( ),( ) T=

o e

Match T U. insert x( ) . V=

T U V x

e T insert x( ),( ) =

! U V;∃ :: Match T
! U V;∃ :: Match( )¬ T. insert x( )
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Again the definition of the extension function for “delete” uses a solution comprehension.

3.1.3  Using Vector Equality Tables

In this trace specification, and in others, quite a bit of repetition is caused by the fact that
similar tables are used in various formulae. In the present example, we could write the
entire contents of the Behaviour section as a single not-too-crowded vector equality table.

3.1.4  Discussion

Even more conciseness can be obtained by using the “try-else” construct. We could write:

The three separate bindings and pattern matches of variables  and  have been reduced
to one. Using a tabular notation for such expressions could make them more palatable.

The presentation of the trace specification is enhanced by a number of conventions. The
exported routines are described in the Behaviour section in the order they appear in the
syntax section. It is best to choose this order so as to group similar programs together. The

 function is omitted when its value is always true. The  function is omitted when its
value is the empty tuple. The  function is present for every exported routine. The third
parameter is omitted when it is irrelevant, this allows one to quickly see which routines
really depend on the third parameter.

The linkage between the trace specification and the actual code is an issue that I have cho-
sen not to address. For example, in C, should the result of the “in” routine be passed via a
pointer parameter, by assignment to a global variable, or using C’s “return” statement?

e T delete x( ),( ) =

! U V;∃ :: Match U V; : Match : U. V( )
! U V;∃ :: Match( )¬ T

o T in x( ) b⁄,( ) b = ! U V;∃ :: Match( )( )=

e T in x( ),( ) T=

! U V;∃ :: Match ! U V;∃ :: Match( )¬
e T insert x( ),( ) = T T. insert x( )
e T delete x( ),( ) = U V; : Match : U. V( ) T
o T in x( ) b⁄,( ) = b b¬
e T in x( ),( ) = T T

e T insert x( ),( ) ,
e T delete x( ),( ) ,
o T in x( ) b⁄,( ) ,

e T in x( ),( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

try U V; : Match :

T,
U. V,

b = true,
T⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

else

T. insert x( ) ,
T,

b = false,
T⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

U V

c o
e
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This sort of question should be answered somewhere —perhaps in the trace specification
document, or perhaps in a separate document. In any case such linkage matters should not
be allowed confuse the description of trace specifications as mathematical objects.

Another linkage question is how the module is initialized. Again, while this issue may be
addressed in the trace specification document, it should not be dealt with by the mathemat-
ical trace specification.

3.2  Nondeterminism

In this section we look at two examples with nondeterminism. The first uses traces where
we can forget about the fact that the members are really pairs. The second does not.

3.2.1  Independent Nondeterminism

Our first example is another “set” example. We just replace the “delete” and “in” routines
with a single routine “get” that provides and deletes an arbitrary member of the set.

Module GetSet[ A : type]

Syntax:

Dictionary:

 is

Canonical Trace:

Initialization:

Behaviour:

insert val

get res res Bool

A
A

Match T U. insert x( ) . V=

Can x A*∈ : i j; : xi = xj : i = j∀( ) : i 0 ... # x,{ }∈ :: insert xi( )〈 〉{ }=

Init _=

! U V;∃ :: Match ! U V;∃ :: Match( )¬
e T insert x( ),( ) = T T. insert x( )

T _≠ T _=
o T get ( ) x b,( )⁄,( ) = b U V; :: Match∃( )∧ b¬
e T get ( ) x b,( )⁄,( ) = U V; : Match : U. V( ) T
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In this trace specification, one can see how the output function for “get” describes the
acceptable outputs and the extension function for “get” determines the next state based on
the output.

I call this sort of nondeterminism independent because the selection of outputs is inde-
pendent of the outputs along the canonical trace.

3.2.2  Dependent Nondeterminism

Our second example is a sort of name server. I have used such a module in a compiler to
convert identifiers and keywords into unique numbers suitable for use as array indices.
This example also shows a nontrivial  function.

Module IdTable [A : type, N : nats]

Syntax:

Dictionary:

 is

Canonical Trace:

Initialization:

Behaviour:

enter val res res Bool

get val res

c

A 0 ... N,{ }
0 ... N,{ } A

Match Ti enter a( ) x true,( )⁄=

Can { n 0 ... N,{ }∈ a An∈; x 0 ... N,{ } n∈; :=
i j; : ai = aj xi = xj∨ : i = j∀( ) :

i 0 ... n,{ }∈ :: enter ai( ) xi true,( )⁄〈 〉 }

Init _=

i∃ x; :: Match i∃ x; :: Match( )¬
# T N= # T N≠

o T enter a( ) x b,( )⁄,( ) = b i :: Match∃( )∧ b¬ b i a; :: Match∃( )¬∧
e T enter a( ) x b,( )⁄,( ) = T T T. enter a( ) x b,( )⁄( )

i a; :: Match∃ i a; :: Match∃( )¬
c T get x( ) a⁄,( ) = true false
o T get x( ) a⁄,( ) = i∃ :: Match true
e T get x( ),( ) = T T



24

In the table for “enter”, I have used the abbreviation of stacking up conjuncts, so the head-
ings for the last two columns are really

and

respectively.

The competence function for “get” says that it is incompetent to try to “get” the value
associated with an invalid index, i.e. an index that was not produced by the module itself.
The output function says that, if the “get” routine is misused, the result could be anything.
But the value of the output function for incompetent uses is only meaningful, if the LD
interpretation is used.

This example shows what happens when the output is dependent not only on the history of
events in the canonical trace, but also on the history of outputs.

3.3  Conclusions

3.3.1  Conciseness and Clarity.

Conciseness and clarity both aid readability and understandability. But there is a tension
between conciseness and clarity. Conventions that allow important information to be con-
veyed without any print are examples: precedence rules that allow parentheses to be omit-
ted, multiplication and composition being written as juxtaposition, the implicit universal
quantification of the free variables of a formula are examples.

A fair degree of concision has been obtained. Has clarity been sacrificed? This is up to the
reader, but I will point out that the main sources of conciseness are: (a) the use of vector
equality table, which allows normally repeated terms to be written only once, (b) the use
of macros to allow common subexpressions to be hoisted out of tables, (c) the implicit uni-
versal quantification of the variables, (d) the implicit typing of variables, (e) ignoring out-
puts in traces and definitions when they are irrelevant, and (f) omitting definitions of  and

 for some event classes. Let’s look at each of these in turn.

Vector equality tables provide useful structuring and contribute to conciseness at the
expense only of repetition. So they add to clarity.

Macros can contribute to page flipping (nonlocallity of relevant information), but it seems
to me that they also provide names for useful concepts.

Implicit universal quantification is more of a problem. It makes it impossible to be sure
that a misspelling is truly a misspelling rather than a variable with a similar name. It also
means that the reader must understand which variables in a defining formula are being
defined ( ,  and  in our examples), which are already defined (macro names and
exported routine names, in our examples), and which are the universally quantified vari-

i∃ x; :: Match( )¬ # T N=∧

i∃ x; :: Match( )¬ # T N≠∧

o
c

c e o
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ables ( , , , and , in our examples). An alternative is to allow only the variables men-
tions in the headers of ,  and  to be implicitly universally quantified.

The implicit typing of variables is another potential problem. I have simply said that the
type of such a variable is the largest set such that the expressions in their scope well
defined. This is somewhat vague and possibly ambiguous. Extensions to the Hindley-Mil-
ner type system such as [Wadler and Blott 1989] may point the way to making this idea
precise. In [Parnas 1993], another route is taken, the type of all variables is a universal set
and there are special rules for dealing with the undefined values which arise as a result.
Unfortunately, these rules are not standard mathematics. Yet another approach is used in
the PVS and Larch specification languages [Shankar et al 1993, Garland and Guttag
1990]. In these languages, one can declare that all variables of a certain name have a cer-
tain type wherever they are bound. For example one could declare

once. This solution is reminiscent of Fortran’s IMPLICIT declaration. This last solution is
particularly appealing because it combines well with implicit universal quantification:
Any variable with an implicit type may be implicitly universally quantified

Ignoring outputs in traces and in applications of  when they are not needed seems to me
to only add to clarity. By not mentioning outputs in the definition of canonical traces, one
makes clear that the module does not have dependent nondeterminism. By not mentioning
outputs in a definition of , one makes it clear that the result does not depend on the output
of the routine (i.e. that the event class has no independent nondeterminism).

Omitting definitions of  is no problem as there is only one possible definition in these
cases. Allowing the omission of definitions of  may not be a good idea as it is impossible
to distinguish deliberate omissions from oversights.

3.3.2  Comparison with [Wang 1994] and [Parnas and Wang 1989]

The format used in [Wang 1994] and [Parnas and Wang 1989] for presenting trace specifi-
cations differs from that presented here in a few respects.

In [Wang 1994] and [Parnas and Wang 1989] the definitions of  and  are in separate
sections (there is no equivalent of ) with  coming first. I feel the definition of  on a
particular event class is more tightly connected to the definition of  on the same event
class, than the definition of  on a different event class (and similarly with  and
switched). I have put these next to each other, together with  for the same class, where
they can be easily read together and so they can share the same table, if convenient, as it
often is. I put  first since it says for which events  must allow at least one output; next I
put  since it defines the domain of .

In [Wang 1994] and [Parnas and Wang 1989] variables used in tables and in the definitions
of canonical traces are implicitly existentially quantified. This is in conflict with the math-
ematical convention that variables that are free in a formula are implicitly universally
quantified. It is easy to find examples where both conventions are used in the same for-
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o
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mula. I have chosen to explicitly bind all variables except those that are universally quan-
tified over the whole formula.

In [Wang 1994] and [Parnas and Wang 1989] special kinds of tables are used for pattern
matching. The meaning of these tables is less than clear, especially when variables show
up in both the pattern column (or conditions column) and the value column. I have
endeavoured to make pattern matching nothing special, just ordinary math. The price is
that the pattern matching must often be written twice.

The special error tokens used in [Wang 1994] and [Parnas and Wang 1989] have no ana-
logue in the theory of trace specifications that I have used and thus are not present in my
presentations of trace specifications. Instead, one can use a result parameter and treat error
tokens like any other part of the output.

In [Wang 1994] it is not clear how different outputs from the same event can be related
and how they in turn are related to the resulting canonical trace. In [Parnas and Wang
1989] the first question is addressed using “output variables”; the second question does
not seem to be fully answered. I have tried to make these interactions clearer without using
output variables. Indeed output variables were originally intended to describe communica-
tion with hardware devices, not to describe nondeterminism. The use of output variable to
describe nondeterminism is discussed further in [Iglewski, Mincer-Daskiewicz, Stencel
1994].
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CHAPTER 4 Theory and Presentation of
Nonleaf Module Specifications

4.1  Introduction

In Chapters 2 and 3 I introduced a new formalization of trace specifications and a new for-
mat for presenting trace specifications for use in module specifications.

The trace specification formalism used in those chapters is suitable for specifying leaf
modules (modules that do not call other modules apart from submodules). To deal with
modules that are not leaves, there are, as I see it, two approaches that can be taken: the
module-as-variable view and the module-as-process view. The best way to see the dif-
ference between these is to consider the minimal information needed by a programmer to
implement a module using each of these views. Let us suppose that there are modules A,
B, C, and D making up a complete program with the following client structure:

That is, A is a client of B and C, and B and C are clients of D. Let us also assume that D
contains state which is affected by calls from both B and C and conversely that the behav-
iour of B and C may be affected by the state of D.

In the module-as-variable view, the programmers implementing B and C are given the
specifications for their own modules and that for module D. In the specifications of B and
C, module D is treated as a global variable whose value is the canonical trace , for
being the history of D. Global variables are treated by making them both values and
results for each exported routine that may access them. The implementor of B (or C)
requires also the specification of D in order that they may know how the state of D will be
affected by each call they may choose to code. The implementor of B (or C) is free to code
any sequence of calls to D that ensures that the final state of D is what is required by the
specification of B (or C).

In the module-as-process view, the specifications of B and C say exactly1 the sequence of
calls to be made to D in each case. D is regarded as a complete cipher for the purposes of
the specification of B and C. The implementors of B and C need not know the specifica-

1.  Modulo nondeterminism.

A

B C

D

r T( ) T
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tion of D and are completely constrained by their own specifications as to how D is to be
made use of.

The module-as-variable model has the advantage of generally simplifying the specifica-
tions of B and C. However it has the disadvantage that the specifications of B and C
depend on the specification of D. If the specification of D were to change, for example,
only in the selection of canonical traces, the specifications of B and C would also have to
be changed — even though the implementations would not! There may also be cases
where module D does not have a trace specification. Consider if module D represents a
(human) user of the system. It would be presumptuous to say that two different traces are
the same to the user, thus every trace must be its own equivalence class. Another example
is where module D represents the file system. Because of concurrent processes that are
also using the file system, one can not rely on its state remaining unchanged during the
course of the activation of an access program of modules B or C. Again the variable model
is not so desirable.

The trace assertion method as outlined in Chapters 2 and 3 is capable of expressing speci-
fications in the module-as-variable view. The state of the called module is considered part
of events and part of the output responses. An example will be given in section 4.4.

In the next section we elaborate the trace specification theory to make it suitable for writ-
ing specifications in the module-as-process view.

4.2  Running Example

As a running example in this chapter and the next, I will use a “set” module similar to the
“GetSet” module described earlier. This module will use another module —presumably a
stack— to record additions and deletions to and from the set, so that these can be undone
later. The module has the following informal specification (using the process model):

Generic parameters:

• “A” is a type.

Imported routines are:

• Push: takes pair consisting of a token —“add”, “delete”, or “noop”— and an object of
type “A”. There is no return value.

• Pop: takes no value parameters, and returns a pair of the sort accepted by “push” and a
flag indicating whether the pop was successful.

Exported routines:

• Insert: takes an object “a” of type “A” and adds it to the set. If the object was already in
the set, it calls “push” with “noop”, otherwise it calls “push” with “(add, a)”.
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• Get: takes no value parameters. If the set is empty, it calls “push” with “noop”, and
returns “false” as its second result parameter. If the set is nonempty, it returns a member
“a” of the set as its first result parameter, “true” as its second result parameter, and as a
side effect removes “a” from the set and calls “Push” with “(delete, a)”.

• Undo: Takes no value parameters. Calls “pop”. If “pop” is unsuccessful, undo returns
the token “failed”. If the value returned by “pop” is “(add, a)” then “a” is deleted from
the set. If the value returned by “pop” is “(delete, a)”, then “a” is added to the set. If the
value returned by “pop” is “(noop, a)”, then no change is made to the set. In all three
cases, “undo” returns the token “undone”.

Notice that this informal (but rigorous?) specification is using the process model. It makes
no assumptions about the specifications of “Push” and “Pop” beyond their syntactic inter-
face. In particular, there is no assumption that they behave in a stack-like manner.

4.3  Two-faced Trace Specification Theory

An alphabet  is a set of pairs. A simple trace over an alphabet  is a member of . A
trace over alphabets  and  is a finite sequence of triples  where  and

. We write  for the set of all traces over  and .

In module specification, one alphabet will be used to represent the calls that can be made
on the module (and their syntactically allowed responses). While another alphabet will
represent the calls that can be made from the module (and their syntactically allowed
responses).

A pre-two-faced trace specification is a tuple  where
 and  are alphabets such that . We will use the

following abbreviations
 for
 for
 for
 for .

Continuing:  is a subset of the set of traces over  and , ,
,

,
(where ~> forms the space of partial functions — I will state the required domains of
and  in a short while) and

.

The alphabets  and  are called the top alphabet and the bottom alphabet,
respectively, and represent, respectively, the interface a module presents to its clients and
the union of the interfaces of the modules that serve this module. Traces in  we call
canonical. The canonical trace  is called the initial trace. Functions , , and  are
respectively called the competence function, the output function, and the extension
function. The competence function is used to indicate whether a module is being correctly
used. The output function is used to indicate the next action the module may take, which

A A A*

A B E S⁄ R⁄ S B*∈
E R⁄ A∈ TracesA B, A B

ERT ERB, Can Init c o e, , , , ,( )
ERT ERB rng ERT( ) dom ERB( )∩ ∅=

ET dom ERT( )
RT rng ERT( )
EB dom ERB( )
RB rng ERB( )

Can ERT ERB Init Can∈
c Can ET ERB*×× ~> Bool∈
o Can ET ERB* RT EB∪( )××× ~> Bool∈

o
c

e T E S O RT∈;;; : o T E S O, , ,( ) : T E S O, , ,( ){ } Can→∈
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can either be a call to a server module or a return. The extension function is used to map
behaviours to canonical behaviours so that the output and competence functions need only
be defined on a (typically small) subset of all possible histories.

The most important function here is . It defines what the module might do after each
input from the outside. That is if the history of a module is characterized by  —
that is the most recent call to the module is , the history before that time is summarized
by the canonical trace , and the history of interactions with provider modules since the
most recent call on the module is — then  is the set of all responses
the module might make. This set may include responses to the caller or calls to provider
modules.

We define a subset of the traces called , a subset  of
, and a function

together by mutual recursion (on the length of traces):
,

,
,

,
,

.

Now we can talk about the domains of  and . The key idea here is that we need not
define these functions for impossible situations, i.e. situations that are provably impossible
by looking at the current trace specification only; we make no assumptions about the
behaviour of any other modules. The sets  and  make this not too difficult.
Define a subset  of  by

,
.

 is the domain of  and  is the domain of . Two points should be
made: First,  is used in the definition of  and  which in turn are used to
defined the domain of ; the reader should check that this recursion is well founded. Sec-
ond, the complicated domains affect the presentation of trace specifications only in that
they allow the specifier to omit cases that can never arise. Thus the extra complication in
the theory makes the specifiers job easier, not harder.

A two-faced trace specification is a pre-two-faced trace specification that satisfies the
following axioms:

(ts0) .
(ts1)  is feasible and, if  is in the range of , then  is feasible.
(ts2) If  is canonical and feasible, then .

In the following we assume we have a two-faced trace specification.

Define the expanded output function:

o
T E S, ,( )

E
T

S X : o T E S X, , ,( ){ }

Feasible Feas
TracesERT ERB, ET ERB* RT EB∪( )××× r Feasible Can→∈

_ Feasible∈
T. E S O⁄⁄( ) Feasible∈( ) T E S O, , ,( ) Feas∈( )=

T E _ X, , ,( ) Feas∈( ) T Feasible∈ o r T( ) E _ X, , ,( )∧( )=
T E S' . E' O',( ) X, , ,( ) Feas∈( ) =

T E S' E', , ,( ) Feas∈ o r T( ) E S' . E' O',( ) X, , ,( )∧(
X RT∈ E X⁄( ) ERT∈⇒( )∧ )

r _( ) Init=
r T. E S O⁄⁄( )( ) e r T( ) S, E O, ,( )=

c o

Feas Feasible
D Can ET ERB*××

T E _, ,( ) D∈( ) T Feasible∈( )=
T E S' . E' O',( ), ,( ) D∈( ) T E S' E', , ,( ) Feas∈( )=

D c D RT EB∪( )× o
o Feas Feasible

o

T E S;; : T Can c T E S, ,( )∧ : X :: o T E S X, , ,( )∃( )∈∀( )
Init T e T

T r T( ) T=

õ Feasible ET ERB* RT EB∪( )××× Bool→∈
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by

and the expanded competence function  by
.

Note that when the bottom alphabet is empty, there is exactly one simple trace over the
bottom alphabet. Thus the set of two-faced trace specifications, such that the bottom
alphabet is empty, is isomorphic to the set of trace specifications as defined in chapter 2.

When writing feasible traces, we write  as , when  is
completely determined by  and , and as , when both  and  are determined by

 and .

4.4  Presentations

We illustrate the variable and the process models by presenting the running example in
both styles. The specification is presented in sans-serif type while comments are in roman
type.

4.4.1  A Process-Model Specification

Module GetSetWithUndo[A: type]

Imports:

Exports:

Dictionary:

 is

Canonical Trace:

Initialization:

push val

pop res res Bool

insert val

get res res Bool

undo res

õ T E S O, , ,( ) o r T( ) E S O, , ,( )=
c̃ Feasible ET ERB*×× Bool→∈

c̃ T E S, ,( ) c r T( ) E S, ,( )=

T. E S O⁄⁄( ) . U T. E O⁄⁄( ) . U S
T E T. E. U S O

T E

add delete noop, ,{ } A×
add delete noop, ,{ } A×

A
A

undone failed,{ }

Match T U. insert x( ) . V=

Can x A*∈ : i j; : xi = xj : i = j∀( ) : i 0 ... # x,{ }∈ :: insert xi( )〈 〉{ }=

Init _=
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Behaviour:
Insert

Get

Undo

4.4.2  A Variable-Model Specification

Here we respecify the same module using the variable model and trace specifications as
defined in Chapter 2. The state of the stack module is represented by parameters  and .
The type of these is , the type of all canonical traces for the stack.

In this specification, we assume that the stack is bounded by an integer N>0 and that the
stack is really a stack, except that, when it is full, the oldest item is dropped.

Module GetSet [A: type]

Syntax:

insert val val SCan res SCan

get val SCan res SCan res res Bool

undo val SCan res SCan res

! U V;∃ :: Match ! U V;∃ :: Match( )¬
o T insert x( ) _ X, , ,( ) X push noop x,( )(= X push add x,( )( )=
o T insert x( ) Y〈 〉 X, , ,( ) X ( )= X ( )=
e T insert x( ),( ) = T T. insert x( )

T _≠ T _=
o T get ( ) _ X, , ,( ) = U V x;;∃ : Match : X= push delete x,( )( )( ) x∃ :: X= push delete x,( )( )( )
o T get ( ) Y〈 〉 X, , ,( ) = x∃ :: Y= push delete x,( )( )(

X= x true,( )∧ )
x∃ :: X= x false,( )( )

e T get ( ) S x b,( ), ,,( ) = U V; : Match : U. V( ) T

o T undo ( ) _ X, , ,( ) X= pop ( )( )=

b b¬
o T undo ( ) pop ( ) c x,( ) b,( )⁄〈 〉 X, , ,( ) = X undone= X failed=

e T undo ( ) pop ( ) c x,( ) b,( )⁄〈 〉, ,( ) =
b¬ T

b
c delete= T. insert x( )
c add= U V; : Match : U. V( )
c noop= T

S S'
SCan

A
A

undone failed,{ }



33

Dictionary:

 is
 is

 is
 is

 is

Canonical Trace:

Note this is a bit of a cheat as we should really include all the value parameters in the
canonical trace. But, as the stack parameter is never used, we will omit mention of it.

Initialization:

Behaviour:

Match T U. insert x( ) . V=
Push c x,( )( )

# S N= # S N<
S' S 1 ... N,〈 〉⋅( ) . push c x,( )( )= S' S. push c x,( )( )=

Pop S'= S 0 ... # S 1−,〈 〉⋅( )
Top c x,( ) S# S 1− = push c x,( )( )
Undo

x∃ :: Top add x,( )( ) U V x :;; Top add x,( ) Match∧( ) : U. V( )
x∃ :: Top delete x,( )( ) x : Top delete x,( )( ) : T. insert x( )( )
x∃ :: Top noop x,( )( ) T

Can x A*∈ : i j; : xi = xj : i = j∀( ) : i 0 ... # x,{ }∈ :: insert xi( )〈 〉{ }=

Init _=

! U V;∃ :: Match ! U V;∃ :: Match( )¬
o T insert x S,( ) S'⁄,( ) = x∃ :: Push noop x,( )( )( ) Push add x,( )( )
e T insert x S,( ),( ) = T T. insert x( )

T _≠ T _=
o T get S( ) S' x b, ,( )⁄,( ) = b U V; :: Match∃( )∧

Push delete x,( )( )∧
b¬ x∃ :: Push noop x,( )( )( )∧

e T get S( ) S' x b, ,( )⁄,( ) = U V; : Match : U. V T

S _≠ S _=
o T undo S( ) S' f,( )⁄,( ) = Pop f= undone∧ S'= S f= failed∧
e T undo S( ),( ) = Undo T
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CHAPTER 5 Automata Theoretic Models

One can think of the trace assertion method as being a concise way of presenting automata
with a large number of states and transitions. The main constraint on the automata
described is that the states be actual histories of the module and that, if the history of a
module happens to be a state, then the state of the automaton is that history. Those histo-
ries chosen as states, are what we have been calling canonical traces. This view of trace
specifications has been investigated in [Janicki 95] and [Iglewski, Madey, and Stencel 94].
Both these papers and the present chapter deal with deterministic automata only, in the
sense that for each state and label, there is only one possible next state. Chapter 6 and
[Wang 1994] consider a form of trace specification that would be best modeled with non-
deterministic automata.

The Z and VDM methods of module specification may be viewed as having (or being)
similar automata theoretic models, but without any restriction as to the nature of the set of
states used.

5.1  Dichromatic Automata

To keep things simple, we begin by considering a class of automata for modeling trace
specifications as defined in Chapter 2. This case is similar to those considered in the refer-
ences, but looking ahead to the case where the bottom alphabet is nonempty causes us to
use a more elaborate kind of automata than one might at first think of.

A dichromatic automaton is a tuple  where  is an alphabet (we
abbreviate  by  and  by ),  and  are disjoint sets, ,

,
,

(where  forms the space of partial functions), and, finally,
.

We call the set  the set of black states and the set  the set of green states.

The language  accepted by the automaton is a set of traces defined by recursion
together with a function , a set  and another function

,
,

,
,

,
.

ER B G i bg gb,, , , ,( ) ER
dom ER( ) ET rng ER( ) RT B G i B∈

bg B ET× ~> G∈
gb G RT× ~> B∈
~>

b0 g b1 E O;;;;∀ :: b1 = gb bg b0 E,( ) O,( ) E O⁄( ) ER∈⇒( )
B G

LA
β LA B→∈ LGA ER* ET×⊆

γ LGA G→∈
_ LA∈

T . E O⁄( ) LA∈( ) T E,( ) LGA∈ γ T E,( ) O,( ) dom gb( )∈∧( )=
β _( ) i=
β T . E O⁄( )( ) gb γ T E,( ) O,( )=

T E,( ) LGA∈( ) T LA∈ β T( ) E,( ) dom bg( )∈∧( )=
γ T E,( ) bg β T( ) E,( )=
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A trace specification  determines an automaton
,

where
,

,
.

It is clear that . It is also clear that two trace specifications that map
to the same automaton differ only in their competence functions.

5.2  Trichromatic Automata

Dichromatic automata are a mere warm up exercise for the objects we are really interested
in: trichromatic automata, which model two-faced trace specifications. A trichromatic
automaton is a tuple

,
in which  and  are alphabets (we use the same abbreviations for range and
domain as with two-faced trace specifications), , , and  are pairwise disjoint sets.

,
,
,
,
,

with two additional restrictions to be mentioned later. We call  the set of red states.

As before, we can define the language  of traces accepted by an automaton . We
define it simultaneously with sets  and

, and functions ,
and . The definitions are:

,
,

,
,

,

,
,

,
,

.
I hope the reader will take the time to see that although this list of definitions looks a bit
intimidating, it consists of only a few ideas used repeatedly. The only complication is that
there are two ways to get to a green state, from a black state and from a red state. The addi-
tional restrictions on automata referred to earlier, are now simply stated as

TS ER Can Init c o e, , , , ,( )=
DA TS( ) ER Can G init bg gb, , , , ,( )=

G dom bg( ) dom gb( ) T E O;; : o T E O⁄,( ) : T E,( ){ }= = =
bg T E,( ) T E,( )=
gb T E,( ) O,( ) e T E O )⁄,( )=

LDA TS( ) Feasible=

ERT ERB B G R i bg gb gr rg, , , , , , , , ,( )
ERT ERB

B G R
i B∈

bg B ET× ~> G∈
gb G RT× ~> B∈
gr G EB× ~> R∈
rg R RB× ~> G∈

R

LA A
LGA TracesERB ERT, ET ERB*××⊆

LRA TracesERB ERT, ET ERB*×× EB×⊆ β LA B→∈ γ LGA G→∈
ρ LRA R→∈

_ LA∈
T . E S O⁄⁄( ) LA∈( ) T E S, ,( ) LGA∈ γ T E S, ,( ) O,( ) dom gb( )∈∧( )=

β _( ) i=
β T . E S O⁄⁄( )( ) gb γ T E S, ,( ) O,( )=

T E _, ,( ) LGA∈( ) T LA∈ β T( ) E,( ) dom bg( )∈∧( )=
T E S' . E' R',( ), ,( ) LGA∈( ) T E S' E', , ,( ) LRA∈(=

ρ T E S' E', , ,( ) R,( ) dom rg( )∈∧ )
γ T E _, ,( ) bg β T( ) E,( )=
γ T E S' . E' R',( ), ,( ) rg ρ T E S' E', , ,( ) R',( )=

T E S E', , ,( ) LRA∈( ) T E S, ,( ) LGA∈ γ T E S, ,( ) E',( ) dom gr( )∈∧( )=
ρ T E S E', , ,( ) gr γ T E S, ,( ) E',( )=

T. E S O, ,( ) LA∈ E O⁄( ) ERT∈⇒
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and
.

The following figure illustrates a portion of a trichromatic automaton constructed from our
running example.

We can generalize our embedding in a straight-forward way. Given a two-faced trace spec-
ification , we define a trichromatic automaton

,
in which

,
,

,
,

,
,

,
,

and
 ,

.

As before we have  and that two two-faced trace specifications that
map to the same automaton differ only in their competence functions.

T E S' . E' R'⁄( ), ,( ) LGA∈( ) E' R'⁄( ) ERB∈⇒

{0,2}

{0,1,2}

{2}

{0}

insert(1)

push((add,1)) () ()

get()
push((delete,0)) () (0,true)

push((delete,2))

() (2,true)

undo()

pop() undone

undone

undone

((add,2),true)

((add,0),true)

((delete,1),false)

((add,32),false)

failed

TS ERT ERB, Can Init c o e, , , , ,( )=
TA TS( ) ERT ERB Can G R init bg gb gr rg,, , , , , , , ,( )=

G T E S X : o T E S X, , ,( ) : T E S, ,( );;;{ }=
R T E; S; E'; : o T E S E', , ,( ) O EB∈∧ : T E S E', , ,( ){ }=
dom bg( ) T E X;; : o T E _ X, , ,( ) : T E,( ){ }=
bg T E,( ) T E _, ,( )=
dom gb( ) T E S O;;; : o T E S O, , ,( ) O RT∈∧ : T E S, ,( ) O,( ){ }=
gb T E S, ,( ) O,( ) e T E S O, , ,( )=
dom gr( ) T E S E';;; : o T E S E', , ,( ) E' EB∈∧ : T E S, ,( ) E',( ){ }=
gr T E S, ,( ) E',( ) T E S E', , ,( )=

dom rg( ) T E S E' O' X : o T E S. E' O'⁄( ) X, , ,( ) : T E S E', , ,( ) O',( );;;;;{ }=
rg T E S E', , ,( ) O',( ) T E S. E' O',( ), ,( )=

LTA TS( ) Feasible=
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Note that this construction does not yield a minimal automaton. In fact, it may even create
an infinite state automaton where a finite state automaton would be sufficient.

Conversely, given a trichromatic automaton  we can construct a two-faced trace specifi-
cation using the quotient construction outlined in [Janicki 1994]. Specifically, let  be a
trichromatic automaton . Define an equivalence
relation on

.
Let  be any function at all from the equivalence classes of ≅ to , such that ,
for all equivalence classes  (i.e. a choice function). Let

,
,

,
,

,
and

.
Now .

A
A

ERT ERB B G R i bg gb gr rg, , , , , , , , ,( )
LA

T U≅( ) V∀ :: T. V LA∈( ) = U. V LA∈( )( )=
ε LA ε C( ) C∈

C
Can T LA∈ :: ε T[ ] ≅( ){ }=
Init ε _[ ] ≅( )=
c T E _, ,( ) β T( ) E,( ) dom bg( )∈=
c T E S. E' O',( ), ,( ) ρ T E S E', , ,( ) O',( ) dom rg( )∈=
o T E S X, , ,( ) γ T E S, ,( ) X,( ) dom gb( )∈(=

γ T E S, ,( ) X,( ) dom gr( )∈∨ )

e T E S O, , ,( ) ε T. E S O⁄⁄( )[ ] ≅( )=
Q A( ) ERB ERT Can Init c e o, , , , , ,( )=
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CHAPTER 6 Exotic Nondeterminism

6.1  An Example

Trace specification theory as presented in Chapter 2 is able to deal with nondeterminism as
demonstrated in the examples of Chapter 3. As shown in Chapter 5, the automata theoretic
models, are however still deterministic. Here is an example module that is quite difficult to
specify using the methods of the preceding chapters. It is a set module with three exported
routines: insert(x) adds x to the set, if it is not already in; remove() removes an arbitrary
member, if the set is nonempty; and in(x) reports on whether x is still in the set.1 The
reader should stop here and attempt to specify this module with the methods presented
above.

Thinking about this from an automata theoretic point of view, one finds that the canonical
traces (black states) used in our earlier “set” modules are the easiest to work with, but that
the automaton must be nondeterministic. In terms of trace specifications, the extension
function must give not one result, but a choice of results.

This leads us to the following...

6.2  Definitions

An exotic pre-trace specification is a tuple  where  is a set of
pairs,  is a subset of the set  of sequences of pairs drawn from , ,

,
,

and
.

The difference is in the extension function, which is now a characteristic predicate for a
set of next states.

We define  and  by recursion:
,

,
,

.

1.  This example was told to me by David Parnas, who heard it from Yabo Wang.

ER Can Init c o e, , , , ,( ) ER
Can ER* ER Init Can∈

c Can dom ER( )× Bool→∈
o Can ER× Bool→∈

e T E; O T';; : o T E O⁄,( ) : T E O⁄ T', ,( ){ } Bool→∈

Feasible ER*⊆ r Feasible 2Can→∈
_ Feasible∈
r _( ) Init{ }=

T. E O⁄( ) Feasible∈( ) T Feasible∈ C r T( )∈ :: o C E O⁄,( )∃( )∧( )=
r T. E O⁄( )( ) ∪ C r T( )∈ : o C E O⁄,( ) : T' : e C E O⁄ T', ,( ){ }( )=
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An exotic trace specification is an exotic pre-trace specification that satisfies the follow-
ing axioms:

(ts0a)
(ts0b)
(ts1)  is feasible and, if  is such that  then  is

feasible.
(ts2) If  is canonical and feasible, then .

The theorems and definitions to follow assume we have an exotic trace specification.

Define the expanded output function:  by

and the expanded competence function  by
.

6.3  Theorems

We can now prove theorems analogous to those in Chapter 2.

Lemma 0: If  is feasible, then  is nonempty.

Proof: by induction on the length of . The base case is trivial. The induction case:
Let  be feasible, by the definition of feasible we know that  is feasible and that

. Now we prove

= {definition of }

= {set theory}

= {set theory}

= {ts0b}

= {trading}

= {from definition of feasible}

QED

Theorem 0: If  is feasible, then, for any event  such that , there is an  such
that  is feasible.

Proof: Let  be feasible and  be any event such that . By Lemma 0, we know
that  is nonempty. Let  be any member of . Now we prove the consequent

 {Definition of feasible}

T E; : T Can c T E,( )∧ : O :: o T E O⁄,( )∃( )∈∀( )
T E O;; : T Can o T E O⁄,( )∧ : T' :: e T E O⁄ T', ,( )∃( )∈∀( )

Init T' T E O;; :: e T E O⁄ T', ,( )∃( ) T'

T T r T( )∈

õ Feasible ER× Bool→∈
õ T E O⁄,( ) C r T( )∈∃ :: o C E O⁄,( )( )=

c̃ Feasible dom ER( )× Bool→∈
c̃ T E,( ) C r T( )∈ :: c C E,( )∀( )=

T r T( )

T
T. E O⁄( ) T

C r T( )∈ :: o C E O⁄,( )∃( )
r T. E O⁄( )( ) { }≠

r
∪ C r T( )∈ : o C E O⁄,( ) : T' : e C E O⁄ T', ,( ){ }( ) { }≠

C r T( )∈ : o C E O⁄,( ) : T' : e C E O⁄ T', ,( ){ } { }≠∃( )

C r T( )∈ : o C E O⁄,( ) : T'∃ :: e C E O⁄ T', ,( )( )∃( )

C r T( )∈ : o C E O⁄,( ) : true∃( )

C r T( )∈ :: o C E O⁄,( )∃( )

true

T E c̃ T E,( ) O
T. E O,( )

T E c̃ T E,( )
r T( ) C r T( )

O :: T. E O,( )( ) Feasible∈( )∃( )
=

O :: T Feasible∈ C r T( )∈∃ :: o C E O⁄,( )( )∧∃( )
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 {Assumption that  is feasible}

 {Generalization}

 {(ts0a)}

 {Definition of }

 {Assumption}

QED

Theorem 1: If  is a member of a set in the range of , then  is feasible.

Proof: By the definition of ,  is either  or such that

for some canonical . In either case it is feasible by .
QED

Theorem 2: For any trace , .

Proof: The  direction follows from the type of  and from Theorem 1.
The  direction follows from (ts2).
QED

For feasible  and , define  iff . This equivalence relation is called
specification equivalence.

Theorem 3: There does not appear to be a direct analogue of Theorem 3 from Chapter 2.

Theorem 4:  implies  and .

Proof is direct from the definitions.

Theorem 5: If , and  and  are both feasible, then .

Proof is by induction on the length of . The base case is trivial. For the inductive case
assume that  (for some , , and ). Since  is shorter than  (and
noting that  and  are both feasible) we have by the induction hypothesis that

. Now to prove the consequent:

 { }

 {Definition of }

 { }

 {Retracing our steps}

= T
O :: C r T( )∈∃ :: o C E O⁄,( )( )∃( )

⇐
O :: o C E O⁄,( )∃( )

⇐
c C E,( )

⇐ c̃
c̃ T E,( )

=
true

T r T

r T init
o C E O⁄,( ) e C E O⁄ T, ,( )∧

C ts1( )

T' T' Can Feasible∩∈( ) T∃ :: T' r T( )∈( )=

⇐ r
⇒

T U T U≡ r T( ) r U( )=

T U≡ õ T E O⁄,( ) õ U E O⁄,( )= c̃ T E O⁄,( ) c̃ U E O⁄,( )=

T U≡ T. V U. V T. V U. V≡

V
V W. E O⁄( )= W E O W V

T. W U. W
T. W U. W≡

r T. V( )
= V W. E O⁄( )=

r T. W. E O⁄( )( )
= r

∪ C r T. W( )∈ : o C E O⁄,( ) : T' : e C E O⁄ T', ,( ){ }( )
= T. W U. W≡

∪ C r U. W( )∈ : o C E O⁄,( ) : T' : e C E O⁄ T', ,( ){ }( )
=
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QED

The extensions of a feasible trace  is the set . Two feasible
traces are said to be observationally equivalent (written ) iff they have the same
extensions.

Theorem 6: Specification equivalence is a refinement of observational equivalence. That
is

for all feasible  and .

Proof: Let  and  be feasible traces such that . Let  be a member of the set of
extensions of . We need only prove (by induction on the length of ) that  is also an
extension of . The base case is easy. For the induction case we assume that

, for some , , and . Since  is feasible,  is also feasible. By
induction we have that  is feasible. From Theorem 5, we have .

true
 {By assumption.}

 is feasible
 { }

 is feasible
 {Definition of feasible}

 {  is feasible}

 {  and definition of }

 {retracing our steps}
 is feasible

QED

6.4  Presentation

An example should suffice to show the analogue of the presentation format of Chapter 3.
This is a specification of the module described at the start of this Chapter.

Module ExoticSet[ : type]

Syntax:

Dictionary:
 is

insert val

delAny

in val res Bool

r U. V( )

T V : T. V Feasible∈{ }
T U≅

T U≡ T U≅⇒
T U

T U T U≡ V
T V V

U
V W. E O⁄( )= W E O T. V T. W

U. W T. W U. W≡

=
T. V

= V W. E O⁄( )=
T. W. E O⁄( )

=
T. W Feasible∈ C r T. W( )∈ :: o C E O⁄,( )∃( )∧

= ṪW
C r T. W( )∈ :: o C E O⁄,( )∃( )

= T. W U. W≡ ≡
C r U. W( )∈ :: o C E O⁄,( )∃( )

=
U. V

A

A

A

Match T U. insert x( ) . V=
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Canonical Trace:

Initialization:

Behaviour:

End of Module Set

Can x A*∈ : i j; : xi = xj : i = j∀( ) : i 0 ... # x,{ }∈ :: insert xi( )〈 〉{ }=

Init _=

e T insert x( ) T', ,( ) =

U V;∃ :: Match T' T=
U V;∃ :: Match( )¬ T' T. insert x( )=

e T delAny ( ) T', ,( ) =

T _≠ U V x;; : Match : T' = U. V∃
T _= T' T=

o T in x( ) b⁄,( ) b = U V;∃ :: Match( )( )=

e T in x( ) T', ,( ) T'= T( )=
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CHAPTER 7 Concluding Remarks

7.1  Further Work

7.1.1  Nonleaf Modules

Chapter 4 presents two approaches to nonleaf modules. Neither seems to me to be entirely
satisfactory. Some situations may call for the variable approach, others for the process
approach. There may be other situations in which some other approach is called for.

7.1.2  Automata Theory of Exotic Nondeterminism

Nondeterministic di- and trichromatic automata could be defined.

7.1.3  Data refinement

The proof of one trace specification refining another or of a program or automaton imple-
menting a trace specification has not been addressed in this report. The methods of [Hoare,
He, and Sanders 1987] should be applicable.

7.1.4  Multiple Objects

Some modules implement multiple similar objects. Consider a module that manages a
number of sets of the sort described in our “Set” module. It seems a pity to throw away the
clean single object trace specifications in such a case. One proposal is to project the trace
of the module onto those calls that are relevant to a particular object. This is fine in the
case where the objects have no interaction. In cases where they have some interaction (e.g.
competition for limited resources) there is some question as to how to specify them.
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