
 

Chapter 2 Errors in Numerical Methods 
 
Numerical methods are mathematical techniques used for solving mathematical 
problems that cannot be solved or are difficult to solve analytically. 
 
Solutions to a math problem can be classified into two types: 1) Analytical solution: an 
exact answer in the form of a mathematical expression in terms of the variables 
associated with the problem. 2) Numerical solution: an approximate numerical value (a 
number) for the solution. 
 
For a problem to be solved numerically, you may choose several numerical methods 
which differ in accuracy, time of calculation. Numerical methods are mostly 
implemented in a computer program (such as MATLAB, C++), we need to know how to 
represent number on a computer. 
 

 
2.1 Computer Representation of Numbers 

 
Computers store and process data in binary form. 
Binary number: 0 or 1. 
 
Convert Binary number 1001.011 to Decimal form:  1001.011= 
 

Base 10 Conversion Base 2 
1   
2   
4   
8   
9   
25   

 
Example 2.1 Convert number 25 to binary with MATLAB. 
 
 
 
1 Bit: one binary digit (0 or 1). 1 Byte: Group of 8 bits. 
MAX BYTE NUMBER = 1111 1111 =  
 
2.1.1 Integer Number 
Computer uses 2 bytes (16 bits), and the 1st bit for sign. 

1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 
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Upper limit = 214+ 213 + . . . + 22+ 21 + 20 = 215 - 1 = 32,767 
 
Integer range: [ -32768 to 32767 ] 
 
2.1.2 Floating-point Number 
Float-point number can be represented by scientific notation: 
-279.456 =                            
 
Binary equivalent of scientific notation:  
 
 
How does computer store floating-point number? Sign, Biased exponent, Mantissa, 
i.e. mantissa in binary form, exponent added by bias and in binary form. 

sign biased exponent mantissa 
 
Single Precision 32-bit 
 

Sign 
1 

bit 

exponent+ bias (127) 
8 bits 

Mantissa 
23 bits 

 
Range:  
 
Double Precision 64-bit 
 

Sign 
1 

bit 

exponent + bias (1023) 
11 bits 

Mantissa 
52 bits 

 
Range:  
 
 

 
 
2.2 Errors in Numerical Solutions 

 
Since numerical solutions are approximated results, we have to specify how different the 
approximated results are from the true values, i.e. how large the error is. 
 
2.2.1 Error Estimation 
 
The difference between the true value and the approximated value is error. Error can be 
estimated in three ways: 
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1). True Error: The difference between the true solution value and the approximated 
(numerical) solution value, 

 
Et = true value – approximated value 

 
2). True Relative Error: The percentage of the numerical error over the true value, 

 

%100
 valuetrue

 valueedapproximat-  valuetrue
t  

      
3). Estimated Relative Error: For some problem, the true solution is not known, 

calculations for a numerical solution are executed in an iterative manner until a 
desired accuracy is achieved, then estimated relative error is used as a standard to 
check the solution. The percentage of the difference between the current 
approximation and preceding approximation over preceding approximation is defined 
as approximation error, 

%100
ionapproximatcurrent 

ionapproximat preceding -ion approximatcurrent 
a  

 
Example 2.2  Determine the true relative error and estimated relative error from 

approximating of e0.5 by using the series 
!3!2

1
32 xx

xe x  up to 6th term. And 

write MATLAB code to display the all the true relative errors for each approximation. 
true value:  >> format long ; exp(0.5) 
                   >> ans = 
                         1.648721 . . . 
 
1st term estimate:  
 
2nd term estimate:  
 
True relative error:  
 
Estimated relative error:  
 
Repeat for approximation to 3rd, 4th…term, we can get 

Terms Results t  a  

1 1 39.3  
2 1.5 9.02 33.3 
3 1.625 1.44 7.69 
4 1.645833333 0.175 1.27 
5 1.648437500 0.0172 0.158 
6 1.648697917 0.00142 0.0158 
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MATLAB code for plotting the true relative error VS terms kept: 
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2.3 Error Types 

 
2.3.1 Round-off Error 

Specific quantities such as π, or 2 cannot be expressed exactly by a limited number of 
digits. 

π = 3.141592653589793238462643 . . . 
But computers can retain only a finite number of bits, thus chopping or rounding should 
be applied to the annoying long number. 
 
Example 2.3  Display π in short, long and long scientific format with MATLAB. 
              >> format short ; pi  
              >> ans = 3.1416  (short data has 5 digits) 
               
              >> format long ; pi  
              >> ans = 3.141592653589793 (long data has 16 digits) 
 
              >> format long e ; pi  
              >> ans = 3.141592653589793e+000 (long e data has 16 digits) 
 
 
Try also exp(1), sqrt(2) by yourself. 
 
Error resulted from omission of the remaining significant figures is called round-off 
error.  

 
Precision: All computations in MATLAB are done in double precision by default. 

 
True value π = 3.141592653589793238462643 . . . 
MATLAB pi = 3.141592653589793e+000 

The digits in the box have been rounded-off under MATALB environment. 
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2.3.2 Truncation Errors 
 

Truncation Error: result from using numerical method (approximation) in place of 
an exact mathematical procedure to find the solution. 
 
Example 2.4  The velocity with respect to time of bungee jumper is given in the 1st-
order differential equation as below. Compute velocity of a free fall bungee jumper 
with a mass of 70 kg. Use a drag coefficient of 0.25 kg/m. 

2v
m

C
g

dt

dv d  

where v = vertical velocity (m/s), t = time (s), g = gravity acceleration ( @ 9.81 m/s2) 
cd = drag coefficient (kg/m), m = jumper’s mass (kg). 
 
Analytical Method: 

 
 
 
 
 
 
 

MATLAB code: 
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Numerical Method: 
Rate of change of velocity can be approximated by 

ii

ii

tt

tvtv

t

v

dt

dv













1
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Substitute dv/dt = g – (cd/m)v2 into above to give 
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Rearrange equation to yield 

 
 
 
 
 
 
 

Employ a step size ∆t = 2 sec, @ start ti  = 0 s, ti+1 = 2 s, v(0) = 0 m/s: 
 

 
Next step ti  = 2 s, ti+1 = 4 s, v(2) = 19.62 m/s: 
 
 
 
 
MATLAB code: 

t(s) v(m/s) 
0 0 
2 19.62 
4 36.49 
6 46.60 
8 50.71 
10 51.96 
12  52.30 
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From the above example, we find that  
 
 
 
 
 

2.4 Function Approximation with Taylor Series 
 

Taylor series expansion has been taught in your previous math course as: 
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Where h = xi+1 –xi, the reminder term Rn accounts for all the terms from n+1 to 
infinity, and  
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If the Taylor series is truncated after term n+1, then f(x+h) is approximated by 
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The n+1th order truncation error is  
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Where ξ is not known but lies somewhere between xi and xi+1. 

 

If we let xi+1 = x,  xi = 0,  then h  =  xi+1 -  xi =  x, thus function f(x) is approximated by 
Taylor series as 
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Example 2.5  Determine the Taylor series of exponential function f(x)=ex. 
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Example 2.6  Plot the Taylor series approximation of f(x)=sin(x) from n=1 to n=4 in 
MATLAB. 
 
The Taylor series of sin(x) can be found as 
 
 
 
 
 
 
MATLAB code: 
 
>> x = -2*pi:pi/30:2*pi; 
>> y = sin(x);plot(x,y) 
>> axis([-2*pi 2*pi -1.5 1.5]) 
>> hold on 
>> y1 = x; plot(x,y1,'-o') 
>> y2 = x-x.^3/6; plot(x,y2,':') 
>> y3 = x-x.^3/6+x.^5/120; plot(x,y3,'-x') 
>> y4 = x-x.^3/6+x.^5/120-x.^7/120/42; plot(x,y4,'.-') 
>> legend('sin(x)','n = 1','n = 2','n = 3','n =4') 
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Example 2.7  Use Taylor series expansions with n = 0 to 6 to approximate f(x) = 
cos(x) at xi+1 = π /3 on the basis of the value of f(x) and its derivatives at xi = π /4. 
 
Step size: h =                                         True value: cos(π /3) = 0.5 
Zero-order approximation: f(π /3) ≈ 
 
 
 
 
 
 
First-order approximation: 
 f(π /3) ≈ 
 
 
 
 
Second-order approximation: 
f(π /3) ≈ 
 
 

The process can be continued and the results listed as in 
 

Order n f(π /3) | t | (%) 

0 0.707106781 
 

41.4 

1 0.521986659 
 

4.40 

2 0.497754491 
 

0.449 

3 0.499869147 
 

2.62 x 10-2
 

4 0.500007551 
 

1.51 x 10-3
 

5 0.500000304 
 

6.08 x 10-5
 

6 0.499999988 2.44 x 10-6 
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