
 

Chapter 6    Numerical Differentiation and 
Integration 

 
 
6.1 Numerical Differentiation 

 
When a function is given as a simple mathematical expression, the derivative can be 
determined analytically. When analytical differentiation of the expression is difficult or 
impossible, numerical differentiation has to be used. When the function is specified as a 
set of discrete data points, differentiation is done by a numerical method. 
 
For a function given in terms of a set of data points, there are two approaches to calculate 
the numerical approximation of the derivative at one of the points:  
1) Finite difference approximation 
2) Derivative from curve fitting 
 
6.1.1 Finite Difference Approximation 

 
Finite difference approximation: the derivative at one point is approximated by the 
slope of the line that connects the two points at both sides of the point. 
 
The derivative f’(x) of a function f(x) at point x=a is defined as 
 
 
According to the two points used, the formula can be written into three types: 
1) Forward difference: 
 
 
 
2) Backward difference: 
 
 
 
3) Central difference: 
 
 
 
 
 
Example 6.1  Consider function f(x)=sin(x), using the data list below to calculate the first 
derivative at x=0.5 numerically with forward, backward and central difference formulas, 
compare them with true value. 
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xi sin(xi) 
0.45 0.43497 
0.50 0.47943 
0.55 0.522687 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.1.2 Differentiation Formulas Using Taylor Series 
 
6.1.2.1 First-order Derivative Approximation 
 
These differentiation formulas can be derived by Taylor series expansion. Taylor series 
can approximate the value of a function at xi+1 in terms of the value of the function and its 
derivatives at xi as 
 
 
 
Where h= xi+1 -xi 
Dropping the power higher than 2 gives, 
 
 
 
 
 
This is forward difference formula, and the truncation error is 
 
 
 
the error is of the order of h. 
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Similarly, backward difference can be shown from approximate f(xi-1) in terms of f(xi) 
and its derivatives, 
 
Where h= xi -xi-1. Dropping the power higher than 2 gives, 
 
 
For central difference, from forward and back difference derivations, we can write 
 
 
f(xi+1)=                                                                                                                        (6.1) 
f(xi-1)=                                                                                                                        (6.2) 
 
Where h= xi+1 -xi =xi -xi-1. Dropping the power higher than 3 and substracting (6.2) from 
(6.1) give, 
 
 
It is easily seen that the central difference formula gives more accurate approximation of 
the derivative and its truncation error is of the order of h2. Central difference formula is 
useful only for interior points not for end points. 
 
The formulas derived above are based on two-point values, we can also approximate the 
1st-order derivative by three-point forward and backward difference. 
 
Three-point forward difference: formula calculates the derivative at point xi from the 
value at that point and the next two points xi+1 and xi+2, and keep h= xi+2 -xi+1 =xi+1 -xi. 
 
f(xi+1)=                                                                                                                        (6.3) 
f(xi+2)=                                                                                                                        (6.4) 
(6.3)*4-(6.4) gives 
 
 
Then 
 
The truncation error is of order of h2. 
 
Example 6.2  Repeat Example 6.1 by three-point forward difference formula. 
 

xi sin(xi) 
0.45 0.43497 
0.50 0.47943 
0.55 0.522687 
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6.1.2.2 Second-order Derivative Approximation 
 
Similar to 1st-order derivative approximation, we can use Taylor series expansion to 
approximate higher order derivatives.  
 
Note: for nth-order derivative approximation, it needs (n+1)-point values. 
 
Three-point central difference formula:  
For 2nd -order derivative approximation, it needs 3-point values. 
 
f(xi+1)=                                                                                                                        (6.5) 
f(xi-1)=                                                                                                                         (6.6) 
 
(6.5)+(6.6) gives 
 
The same way can be applied to develop higher order. For example, 4th-order derivative 
needs 5-point ( xi+2 , xi+1, xi., xi-1, xi-2). You can find 
 
 
 
Three-point forward difference formula:  
 
 
Three-point backward difference formula:  
 
 
6.1.3 Differentiation Formulas Using Lagrange Polynomials 
 
The differentiation formulas can be derived by Lagrange polynomials. Given three points 
(xi, yi), (xi+1, yi+1), (xi+2, yi+2), the Lagrange polynomial that passes through the points is 
 
f(x)=                
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f’(x)=                                                                                                                            (6.7) 
 
 
 
From  (6.7), you can find the 1st-order derivative at any one point of the three given 
points (xi, xi+1, xi+2) by replacing x with its corresponding value.   
 
Two advantages: 
1). 
 
2). 
 
  
6.1.4 Differentiation Using Curve Fitting 
 
The differentiation can also be found by curve fitting method. For a set of given points, 
find a differentiable analytical function by curve fitting those data points, then calculate 
its derivative at the point of interest. 
 
 
6.1.5 MATLAB Built-in Function for Differentiation 
 
Two built-in functions that are important in calculating numerical difference are: 
1). D= diff(X) 

diff(X) calculates the difference between adjacent elements of a vector. 
where vector X=[x1, x2, …, xn-1, xn], difference vector D=[(x2-x1), (x3-x2), …, (xn-xn-

1)]. 
 
To calculate the finite forward difference for Y=[y1, y2, …, yn-1, yn], use 
 
>>Yder= 
The result is a difference vector 
 
 
 
For equal spacing points, h= 
It can be simplified as 
 
 
2). DP=polyder(P) 

polyder(P) calculates the derivative of the polynomial whose coefficients are given by 
the vector P. 
 

Example 6.3  Find the derivative of f(x)=5x3+4x2+7 by MATLAB function polyder(). 
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6.2 Numerical Integration 
 
Integration has been widely used in engineering and science. The general form of a 
definite integral is 
 
 
 
where f(x) is the integrand. The integral result is a number when the upper and lower 
limits a and b are numbers. 
 
If f(x) is a very complex function of x or its analytical form is not available (i.e. only 
discrete data points by measurement), the anti-derivative is impossible to found, then the 
integral needs to be determined by numerical integration methods. 
 
 
 
 
 
 
 
 
 
 
 
The numerical integration methods include: 
(1). Rectangle and midpoint methods 
(2). Trapezoidal method 
(3). Simpson’s method 
(4). Gauss quadrature method 
The idea of all the methods is based on Newton-Cotes integration formulas.  
 
 
6.2.1 Newton-Cotes Integration Formula 
 
Newton-Cotes Integration Formula: Replace a complicated integrand function with a 
polynomial that is easy to integrate 
 
 
 
Where Fn(x)=                                                        , and it can be found by interpolation or 
curve fitting. 
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6.2.2 Rectangle and Midpoint Methods 
 
6.2.2.1 Composite Rectangle Method 
 
 
Composite Rectangle Method: divides the integration domain [a, b] into N subintervals. 
The integral in each subinterval is calculated as area of a rectangle, and the whole integral 
is obtained by adding the values of the integrals in all the subintervals. 
 
 
 
 
 
 
 
 
 
 
 
If the height of each rectangle in the subinterval is assumed as the value of the integrand 
at the left end-point of the subinterval, then 
 
I(f)= 
 
 
 
 
 
 
 
However, this method may cause overestimation or underestimation for the result when 
the integrand function is monotonically increasing or decreasing. 
 
When the subintervals have the same width h, the equation above can be simplified as 
 
I(f)= 
 
 
 
 
 
 
6.2.2.2 Composite Midpoint Method 
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Composite Midpoint Method: is basically the same as composite rectangle method, but 
it improves the accuracy by using the value of the integrand at the middle of the 
subinterval as the rectangle height. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I(f)= 
 
 
 
 
When the subintervals have the same width h, the equation above can be simplified as 
 
I(f)= 
 
 
 
 
 
6.2.3 Trapezoidal Method 
 
Composite Trapezoidal Method: approximates the integrand in each subinterval by a 
line function (1st-order polynomial) that passes through both end points of the subinterval. 
The integral in each subinterval is calculated as area of a trapezoid, and the whole 
integral is obtained by adding the values of the integrals in all the subintervals. 
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I(f)= 
 
 
 
 
When the subintervals have the same width h, the equation above can be simplified as 
 
I(f)= 
 
 
 
 
 
 
 
 
 
 
Example 6.4  Use composite trapezoidal method to integrate  

5432 400900675200252.0)( xxxxxxf   between [0, 0.8]. 
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MATLAB built-in Trapezoidal integration function: 
I=trapz(X, Y) 
Integral of Y with respect to X, where Y is vector of integrand values corresponding to 
vector X. 
 
Example 6.4 cont.  Repeat Example 6.4 using MATLAB function trapz(). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n I 
2 1.0688 
3 1.3639 
4 1.4848 
5 1.5399 
6 1.5703 

 
 
 
 
 
6.2.4 Simpson’s Method 
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Simpson’s Method: approximates the integrand in each subinterval by a higher order 
polynomial that passes through some points of the subinterval. The integral in each 
subinterval is calculated as area of a trapezoid, and the whole integral is obtained by 
adding the values of the integrals in all the subintervals. 
 
The most common Simpson’s methods include: 
1). Simpson’s 1/3 Method 
2). Simpson’s 3/8 Method 
 
Note: All the subintervals should have same width. 
 
6.2.4.1 Composite Simpson’s 1/3 Method 
 
Composite Simpson’s 1/3 Method: approximates the integrand in every 2 subintervals 
by a 2nd-order polynomial that passes through three points of 2 adjacent subintervals. The 
integral in each subinterval is calculated as area of a trapezoid, and the whole integral is 
obtained by adding the values of the integrals in all the subintervals.  
 
It is easily to know that the number of subintervals must be an even number. 
 
 
 
 
 
 
 
 
 
The 2nd-order polynomial can be written in Newton’s form 
 
p(x)= 
 
since 
p(xi-1)= 
p(xi)= 
p(xi+1)= 
 
We can find 
 
 
 
 
 
then 
 
Ii(f)= 
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Consider all the subintervals 
 
I(f)= 
 
 
By collecting similar terms, then 
 
I(f)≈ 
 
Or I(f)≈ 
 
Example 6.5  Repeat Example 6.4 using composite Simpson’s 1/3 method with N=4 
subintervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2.4.2 Composite Simpson’s 3/8 Method 
 
Composite Simpson’s 3/8 Method: approximates the integrand in every 3 subintervals 
by a 3rd-order polynomial that passes through four points of 3 adjacent subintervals. The 
integral in each subinterval is calculated as area of a trapezoid, and the whole integral is 
obtained by adding the values of the integrals in all the subintervals.  
 
It is easily to know that the number of subintervals must be dividable by 3. 
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The 3rd-order polynomial can be written as 
 
p(x)= 
 
since 
p(xi)= 
p(xi+1)= 
p(xi+2)= 
p(xi+3)= 
 
We can determine the coefficients and find 
 
Ii(f)= 
 
Consider all the subintervals 
 
I(f)≈ 
 
 
By collecting similar terms, then 
 
I(f)≈ 
 
Or I(f)≈ 
 
 
Example 6.6  Repeat Example 6.4 using composite Simpson’s 3/8 method with N=6 
subintervals. 
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MATLAB built-in Simpson’s integration function: 
I=quad('function', a, b) 
Calculates the integral of 'function' between [a, b] with an absolute error less than , 
where function can be a string, name of a function file, or the name of an inline function.  

610

 
Example 6.7  Repeat Example 6.4 using MATLAB function quad(). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2.5 Gauss Quadrature Method 
 
All the integration methods introduced before are using polynomial functions passing 
through subinterval endpoints. 
 
Gauss Quadrature Method: evaluates the integral by using weighted addition of values 
of integrand at Gaussian points that are not equally spaced and do not include the end 
points. 
 

Gauss quadrature integration of 
1

1
)( dxxf . 

Write the integral in Gauss quadrature form as 


1

1
)( dxxf  

 
The coefficients Ci and the location of Gauss points xi are determined by enforcing the 
above equation to be exact for the cases when The number of cases 
needed depends on the value of n (number of Gauss points).  

,,,,1)( 32 xxxxf 

 
For example for n=2, 


1

1
)( dxxf                                                                                                         (6.8) 

There will be four unknowns C1, C2, x1, x2, thus the following 4 cases are required: 
Case 1:  
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Case 2:  
 
Case 3:  
 
Case 4:  
 
We can find 
 
 
 
Then substituting these constants into equation (6.8) gives 
 
                                                                                                                           (6.9) 
You can check (6.9) works for . However, when f(x) is different from 
these, Gauss quadrature only approximates the value for the integral. 

32 ,,,1)( xxxxf 

 

Example 6.8  Evaluate  by Gauss quadrature method with n=2. 
1

1
)cos( dxx

 
 
 
 
 
 
 
 
 
Note: The accuracy of Gauss quadrature can be increased by using a higher value for n 
(Gauss points). The Gauss points and coefficients for higher value of number are 
provided by Table 7.1 on P285. 
 

Q: How to evaluate  by Gauss quadrature? 
b

a
dxxf )(

A: Transform  into the form by changing variable. 
b

a
dxxf )( 

1

1
)( dttf

 
Let  
 
Then  
 
 

Example 6.9  Evaluate  by Gauss quadrature method with n=4.  3

0

2

dxe x
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