THE THERMAL INSUL. AND BLEND EVN. Issue 18, October 1994

ABSTRACT: This paper presents the development and application of a new method to evaluate thermal conditions under field conditions. The method is based on a comparative test method to determine thermal resistance.

ONHA, OMAHA, KIA OR L. Canada
ER-C Building N.2
National Research Council of Canada

And M. K. Rama

M. T. Bomper C. S. Muzyczka D. G. Stevens

10. References. 1.1999, "Thermal Conduct and Properties Based on"...
APPROXIMATION OF HEAT TRANSFER THROUGH A SLAB

where the are bulk density below.

- The physical principles of the method and the numerical technique are described. The method is based on the heat conduction equation in one dimension and the corresponding boundary conditions.

Figure 1

- The approximation of heat transfer through a slab is shown.

Figure 2

- The thermal properties of the slab are illustrated.

Figure 3

- The thermal resistance of the slab is measured.

Figure 4

- The thermal conduction equation is applied.

Figure 5

- The heat transfer coefficient is calculated.

Figure 6

- The heat flux is determined.

Figure 7

- The thermal resistance of the slab is measured.

Figure 8

- The heat conduction equation is applied.

Figure 9

- The heat transfer coefficient is calculated.

Figure 10

- The heat flux is determined.

Figure 11

- The thermal resistance of the slab is measured.

Figure 12

- The heat conduction equation is applied.

Figure 13

- The heat transfer coefficient is calculated.

Figure 14

- The heat flux is determined.

Figure 15

- The thermal resistance of the slab is measured.

Figure 16

- The heat conduction equation is applied.

Figure 17

- The heat transfer coefficient is calculated.

Figure 18

- The heat flux is determined.

Figure 19

- The thermal resistance of the slab is measured.

Figure 20

- The heat conduction equation is applied.

Figure 21

- The heat transfer coefficient is calculated.

Figure 22

- The heat flux is determined.

Figure 23

- The thermal resistance of the slab is measured.

Figure 24

- The heat conduction equation is applied.

Figure 25

- The heat transfer coefficient is calculated.

Figure 26

- The heat flux is determined.

Figure 27

- The thermal resistance of the slab is measured.

Figure 28

- The heat conduction equation is applied.

Figure 29

- The heat transfer coefficient is calculated.

Figure 30

- The heat flux is determined.

Figure 31

- The thermal resistance of the slab is measured.

Figure 32

- The heat conduction equation is applied.

Figure 33

- The heat transfer coefficient is calculated.

Figure 34

- The heat flux is determined.

Figure 35

- The thermal resistance of the slab is measured.
After substitution and rearranging one obtains the following equation:

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial \phi}{\partial t} \]

Substituting the function \(\phi \) into equation (8) and rearranging yields:

\[\frac{\partial \phi}{\partial t} + \frac{\partial^{2} \phi}{\partial x^2} + \frac{\partial^{2} \phi}{\partial y^2} = 0 \]

Two time steps backward into equation (9) and form the difference equations one and only one time.

\[\frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial t} = 0 \]

For each step back from the value of \(\phi \) at time \(t \), one can determine values of the unknown values at time \(t-1 \).

The calculations are performed with a numerical approximation of the convection-diffusion equation, where \(c \) and \(c^\prime \) are the internal and external conductivity at \(0^\circ C \) and the temperature.

If \(y \) can be expressed as a linear function of temperature, then:

\[y = c \cdot x \]

Where \(x \) is the external condition, \(k \) is the thermal conductivity at the condition.
The calculation continues with the aid of parameters that give a regression.

The calculation of the second parameter is carried out to half of the in the regression.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prepare data</td>
</tr>
<tr>
<td>2</td>
<td>Compute regression</td>
</tr>
<tr>
<td>3</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>

The calculation of the second parameter is carried out in the steps shown in the table above.

The calculation of the second parameter is carried out in the steps shown in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compute regression</td>
</tr>
<tr>
<td>2</td>
<td>Interpolate the data</td>
</tr>
</tbody>
</table>
The conclusion shown in Figure 4 suggests that the intercept value of thermal conductivity was introduced to this when 12 percent change in the intercept value of thermal conductivity was introduced to change the intercept value of thermal conductivity. Figure 4 shows the standard error of the ratio of (A_x / A_y) by slope. The error in this figure is due to the error in the slope of the regression line. The slope of the regression line should equal one if the intercept equals the ratio.

The absolute values of the ratios have been chosen instead of the relative values.

These two kinds of deviations from a straight line passing through the regression line are the most significant features of the data in the correlation coefficient measurements.

- A high scatter indicates a large amount of error in the measurements.
- A low scatter indicates a smaller amount of error in the measurements.

The correlation coefficient is a measure of the scatter between data points.

The error in the regression line and the importance of the intercept in these calculations was discussed in the Introduction section.

Figure A

- An example of the correlation coefficient of the regression line:

Figure B

- An example of the correlation coefficient of the regression line:

Figure C

- An example of the correlation coefficient of the regression line:

Figure D

- An example of the correlation coefficient of the regression line:

Figure E

- An example of the correlation coefficient of the regression line:

Figure F

- An example of the correlation coefficient of the regression line:

Figure G

- An example of the correlation coefficient of the regression line:

Figure H

- An example of the correlation coefficient of the regression line:

Figure I

- An example of the correlation coefficient of the regression line:

Figure J

- An example of the correlation coefficient of the regression line:
Because the HFC model performs stepwise optimization of three pare-...
A New Method to Determine Thermal Resistance Under Field Conditions

The present section describes the development of a method to determine the thermal resistance under field conditions. The method is based on the analysis of the temperature distribution within materials and structures under varying conditions. The approach involves the use of mathematical models and computational techniques to accurately predict thermal behavior.

The key steps in the method include:

1. **Data Collection**: Measuring the temperature at various points on the material or structure under consideration.
2. **Modeling**: Developing mathematical models that describe the thermal behavior of the material or structure.
3. **Simulation**: Using computational tools to simulate the thermal behavior under different conditions.
4. **Analysis**: Interpreting the results to determine the thermal resistance.

The method is validated through experimental results and comparisons with existing techniques. The accuracy of the method is assessed by comparing the predicted results with experimental data.

The table below summarizes the key parameters and their corresponding values for a typical application:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>80°C</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.50</td>
</tr>
<tr>
<td>Conductivity</td>
<td>1.20</td>
</tr>
</tbody>
</table>

The method can be applied to various materials and structures, including those used in aerospace, automotive, and industrial applications. It provides a more accurate and efficient way to determine thermal resistance compared to traditional methods.

In conclusion, the new method offers significant improvements in accuracy and efficiency compared to existing techniques. Further research is needed to extend its applications to a wider range of materials and conditions.
A Method to Determine Thermal Resistance under Field Conditions

17
HFE measurements. This information is combined with the experimental data to provide insights into the behavior of the material under the conditions of the experiment. The results of these measurements are then used to understand the properties of the material.

The principle of the HFE method is to use a combination of two material properties—thermoelectric power (TEP) and thermal conductivity (TC)—to determine the thermal resistance of a material. This method is particularly useful for materials that exhibit a high sensitivity to changes in temperature.

The figure below shows the relationship between the thermal resistance and the thermal conductivity of the material. The data points represent different values of the thermal resistance and the thermal conductivity, with the line representing the trend of the relationship. The graph is used to illustrate the effectiveness of the HFE method in accurately determining the thermal resistance of the material.

Figure 9. Thermal Resistance vs. Exposure Period for Various Composite Materials

- **Thermal resistance (°C/W cm²)**
- **Exposure period (days)**

Graph legend:
- SdX = 1
- SdX = 2
- SdX = 3
- SdX = 4

Discussion

The results of the HFE measurements indicate that the thermal resistance of the material decreases as the exposure period increases. This is consistent with the theoretical predictions that the thermal resistance of a material is inversely proportional to the thermal conductivity of the material.

Furthermore, the data points show that the thermal resistance of the material is significantly affected by the exposure conditions, with higher exposure periods resulting in lower thermal resistance. This suggests that the HFE method is effective in accurately determining the thermal resistance of the material under different conditions.

Key findings

1. The HFE method provides a reliable and accurate method for determining the thermal resistance of materials.
2. The thermal resistance of the material decreases with increasing exposure period.
3. The thermal resistance of the material is significantly affected by the exposure conditions.

Conclusion

The HFE method is a powerful tool for determining the thermal resistance of materials under different conditions. Its accuracy and reliability make it a valuable tool for researchers and engineers working in various fields, including aerospace, electronics, and construction.
REFERENCES

ACKNOWLEDGMENTS

CONCLUSIONS

The paper presents the development and application of a new method to measure the thermal properties of materials under high conditions. Several methods were further developed in this project and provided building blocks.

Deep gratitude is expressed to D. C. Spearing, whose concepts...