ENGR 2422 Engineering Mathematics 2

Brief Notes on Chapter 5


Laplace Transforms

Table of Contents:

5.1     Definitions

5.2     Some Properties and Theorems of Laplace Transforms

5.3     Convolution   

5.4     Some Inverse Laplace Transforms

5.5     Miscellaneous Examples  

5.6     Additional Details on Inhomogeneous ODEs with Discontinuities



5.1  Definitions

 

An initial value problem is a differential equation together with sufficient initial conditions to determine the values of all of the arbitrary constants of integration.

 

The techniques of Laplace transforms allow an initial value problem to be converted into an algebra problem.   Inverse Laplace transforms are then needed to convert the solution of the algebra problem back into a complete solution of the initial value problem.

 

 

 

 

 

 

 

 

 

 

 

 


Laplace transforms may also be used to solve certain types of integral equations, such as

A function f (t) is said to be of exponential order a  if and only if there exist positive constants  k  and  a  such that

| f (t) |  <  k eat      "t > 0

 

f (t) = constant  and the functions  cos wt  and  sin wt  are all of exponential order 0.

The function  f (t) =  tn  (where n > 0) is of exponential order 1.

The function  f (t) =  eat  (where a > 0) is of exponential order a.

Laplace transforms exist for all of these functions.

 

The function  f (t) =  tan wt   is not of exponential order (because of the infinite discontinuities at  wt = (2n+1)p/2).

The function  f (t) =  exp(bt2)  is not of exponential order  (unless b £ 0).

Neither of these functions has a well-defined Laplace transform.

 

 

 

If the function  f (t)  is

§       defined for all t > 0 and

§       piecewise continuous on t > 0

(that is, has at most a finite number of finite discontinuities), and

§       is of exponential order, then

the Laplace transform  L {f (t)} = F (s)  exists and is defined by

 

A table of Inverse Laplace transforms follows in section 5.4.



5.2  Some Properties and Theorems of Laplace Transforms

 

The Laplace transform is linear, that is

L {a.f (t) + b.g(t)}  =  a.L {f (t)} + b.L {g (t)}

for all constants  a and b,  provided that both L {f (t)} and L {g (t)} exist.

 

Derivatives:

 

Provided the function f (t) is continuous at  t = 0 and is differentiable on t > 0,

L {f ' (t)}  =  s.L {f (t)} - f (0)

This generalizes to

or

Thus the application of Laplace transforms to an initial value problem (involving derivatives with respect to t and their values at t = 0) converts it into an algebraic problem (involving the variable s).

 

The integral form of this identity is

 

Also    and 


First Shifting Theorem:

 

If  L {f (t)} = F (s)  then  L {eat f (t)} = F (s - a)

An equivalent statement is

If  L -1{F (s)} =   f (t)   then   L -1{F (s - a)} =  eat f (t)

 

The Heaviside (Unit Step) Function:

 

A simple switch that is off until time t = a, when it is switched on abruptly, can be modelled by the Heaviside function  H(t-a)  (also known as the unit step function u(t-a).)    It has a finite discontinuity at t = a.

A function  f (t) that has one functional form  g(t)  when t < a  but a different form  h(t)  thereafter can be expressed in a single-line definition using the Heaviside function:

 

The Laplace transform of  H(t-a) is

The derivative of  H(t-a) is the Dirac delta function d(t-a):

The Dirac delta function has the sifting property that

for any function f (t)  that is continuous at t = a ³ 0.

 

The Laplace transform of the Dirac delta function is

L {d(t-a)}  =  e-as

 

Second Shifting Theorem:

 

If  L {f (t)} = F (s)  then  L {H(t-a) f (t-a)} = e-asF (s)

An equivalent statement is

If  L -1{F (s)} =   f (t)   then   L -1{e-asF (s)} =  H(t-a) f (t-a)

 

 

Periodic Functions: 

 

If  f (t)  is a periodic function with period  T  (so that  f (t + T) º f (t)  "t), then

 



5.3  Convolution   

 

The convolution of two functions  f (t)  and  g(t)  is a function  (f*g)(t)  defined by

Convolution is symmetric, so that

It can be shown (using methods of multiple integration from Chapter 6) that

and, equivalently, that

where   F (s) = L {f (t)}   and     G(s) = L {g(t)}  

Some Laplace transforms and inverse Laplace transforms can be determined using these identities.

 

The sifting property of the Dirac delta function leads to

(d*f)(t) = f (t)

and

d(t-a)*f (t)  =  f (t-a) H(t-a)

 

 

When the initial conditions of an initial value problem are all zero, convolution can be used to obtain the complete solution:

 

When   y(0) = y' (0) = 0  and  y" + by' + cy = r(t)

and Laplace transforms are defined as 

Y(s) = L {y(t)},  R(s) = L {r(t)},  Q(s) = L {q(t)}, then

(s2 + bs + c) Y(s) = R(s)   Þ   Y(s) = Q(s)R(s)

where    is the transfer function.

 

The complete solution to  { y" + by' + cy = r(t) , y(0) = y' (0) = 0 }  is then

y(t)  =  q(t)*r(t)

 

Convolution can also be used to solve integral equations that include integrals of the form

Example

The integral equation

is also  y(t)  =  t2 + 1 - 9 t*y(t)

Let  Y(s) = L {y(t)} , then upon taking the Laplace transform of the integral equation, 

   which leads to

Taking the inverse Laplace transform yields the solution

 



5.4  Some Inverse Laplace Transforms

[Note that some of the equations displayed in this table might appear displaced from their proper positions.]

 

 

F (s)

 

f (t)

 

F (s)

f (t)

f (t)

 

t  cos w t

(n Î ù) 

 

eat

 

              (n Î ù) 

e-as

d (t - a)

 

H (t - a)

 

 

 

 

Square wave,

period  2a ,

amplitude 1

 

Triangular wave,

period  2a ,

amplitude a

Sawtooth wave,

period  a ,

amplitude b

 

{sn F(s) - sn-1f (0)

- sn-2f N(0)

- sn-3 f O(0)  - ...

- s f (n-2) (0)

-  f (n-1) (0) }

 

 

- t  f (t)

 

 



5.5  Miscellaneous Examples  

 

Only the key steps in the solutions are listed here.   More details will be presented in class.


Example 1

 

Derive the Laplace transform of   f (t) = cos wt .

 

L {cos wt}  can be evaluated directly from the definition:

but this requires a double integration by parts and some tedious algebraic manipulation.

Instead, note that

Using also the linearity property of Laplace transforms, it then follows that

Therefore

 


Example 2

 

Solve the initial value problem

y"  -  5 y'  +  6 y  =  0 ,       y(0) = 1,   y' (0) = 0

 

Let   Y(s)  =  L {y(t)} .

L {y" }  =  s2Y(s)  -  s.y(0)  -  y' (0)   =   s2Y  -  s

L {y' }  =  s Y(s)  -  y(0)   =   s Y  -  1

L {y"  -  5 y'  +  6 y}  =  L {0}   Þ   (s2 - 5s + 6) Y(s)  - s + 5  =  0

Therefore   

y(t)  =  3 e2t  -  2 e3t

 


Example 3

 

Solve the initial value problem

y"  +  4 y'  +  13 y  =  26 e-4t ,                    y(0) = 5,   y' (0) = -29

 

Let   Y(s)  =  L {y(t)} .

L {y" }  =  s2Y(s)  -  s.y(0)  -  y' (0)   =   s2Y  -  5 s  +  29

L {y' }  =  s Y(s)  -  y(0)   =   s Y  -  5

L {y"  +  4 y'  +  13 y}  =  L {26 e-4t}  

leads to

,

Therefore   

y(t)  =   2 e-4t  +  e-2t (3 cos 3t  -  5 sin 3t)


Example 4 

 

Solve the initial value problem

 

f (t)  =  t H(t-3)  =  (t-3) H(t-3)  +  3 H(t-3)

and the second shift theorem,

L {y"  +  4 y}  =  L {f (t)}   becomes

,   where   Y(s)  =  L {y(t)}.



Example 5

 

Note that

.

[Either use partial fractions, or] use the identity

Therefore

 


Example 6

 

Use  L {cos w t}  to derive L {sin w t} .

 

Using  L {f ' (t)}  = s.L {f (t)} - f (0)    and

we have

Therefore

 



Example 7

 

A damped mass-spring system (with damping constant  c = 3m and spring modulus k = 2m) is at rest until an impulse of 1 Ns is applied at time  t = 1 s.   Find the response  y(t).

 

The impulse is modelled by a Dirac delta function at time t = 1.

y"  +  3 y'  +  2 y  =  d(t-1)  ,                     y(0) = y' (0) = 0

Taking Laplace transforms, with  Y(s) = L {y(t)},

(s2 + 3s + 2) Y(s) =  e-1s 

[This is an over-damped system.]

or

y(0) = y' (0) = 0    allows the transfer function  Q(s)  to be used:

y"  +  3 y'  +  2 y  =  d(t-1)    Þ   r(t)  =  d(t-1) ,

  

and   Y(s)  =  Q(s)R(s)    Þ   y(t)  =  q(t)*r(t)  =  q(t)*d(t-1)  =  q(t-1) H(t-1)

by the sifting property of the Dirac delta function.

This leads to the same solution as before.


Example 8

 

Find the Laplace transform of the full square wave, amplitude 1, period 2a.

 

The square wave can be described by 

Over the first period only, it can also be described by

f (t)  =  H (t)  -  2 H (t-a) 

The period is  T = 2a.   It then follows that

Therefore

Other examples will be demonstrated in class.

 



5.6  Additional Details on Inhomogeneous ODEs with Discontinuities

 


Consider the second order linear inhomogeneous ODE

with  l1 ¹ 0, l2 ¹ 0, l1 ¹ l2 , where  a1 and a2  are constants.


 

Let   r(x) = the right hand side of the ODE and

let   R(s)   =  L {r(x)}, the Laplace transform of r(x).

Let   Y(s)  =  L {y(x)}, the Laplace transform of the solution.

 

In general, if

then

where  u(x-a) º f (x)  and  v(x-a) º g(x)

by the second shift theorem and where

F(s)  =  L {f (x)},    V(s)  =  L {v(x)}  and   U(s)  =  L {u(x)}.

 

In this case, f (x) and g(x) are both constants, so that 

v(x-x ) - u(x-x ) º g(x) - f (x) º a2 - a1 .

The Laplace transform of the initial value problem is then

 

from the cover-up rule [or another valid method] for decomposition into partial fractions.

 


Applying the second shift theorem in reverse Þ

 

 

 

 

One can show that

so that the solution  y(x)  is continuous at  x = x .

 

One can also show that

so that the solution  y(x)  is differentiable at  x = x .

 

A solution found by a non-transform method (finding the complementary function, particular solution, general solution and complete solution) must therefore assign values to the arbitrary constants in such a way that the complete solution is differentiable (and continuous) at  x = x .   This is considered on the next page.

 



Piecewise Continuous r(x) – Non-Transform Method

 

Consider the second order linear inhomogeneous ODE

with  l1 ¹ 0, l2 ¹ 0, l1 ¹ l2 , where  a1 and a2  are constants.


C.F.:          

 

P.S.:           

 

G.S.:          

Initial conditions (branch  x < x ):

Therefore the complete solution for the branch  x < x  is

 

For   x > x   we impose conditions of continuity and differentiability at  x = x :

 

 

This pair of simultaneous equations leads to a different pair of values for the arbitrary constants  A, B  in the branch  x ³ x  than they had for the branch  x < x :

The complete solution for all  x  is then

as before.


 

As an example, the initial value problem

(for which  a1 = 12,  a2 = 0,  l1 = 3,  l2 = x = 2) has the complete solution

One can check that  y(x)  and  y' (x)  are both continuous at  x = 2.

 

The graphs of  y(x)  and  y' (x)  are available on the web page

"www.engr.mun.ca/~ggeorge/2422/notes/c56ex.html".


END OF CHAPTER 5


  [Return to your previous page]

Created 2001 03 12 and modified 2001 03 12 by Dr. G.H. George