ENGR 1405 Engineering Mathematics 1

Faculty of Engineering and Applied Science
2000 Fall


Problem Set 2
Solutions

[Note:   some browsers do not display symbols correctly.   Read
        “-” as “-”   (minus)   and
        “ú” as “ú”   (set of real numbers).]

A set of instructions on how to use Dr. George’s row reduction computer program is available at this link.


 

For each of the following systems of linear equations

(i)

rewrite as a matrix equation

(ii) identify the coefficient matrix, the matrix of constants, and the augmented matrix
(iii) use elementary operations to reduce the augmented matrix to either row echelon form, or reduced row echelon form
(iv) write the solution, if any, of the system of linear equations


  1.  
    x   +   3y   -   2z   =   8
    3y   -   5z   =   11
    2x   +   5y   -   8z   =   19


    1. The matrix equation is   Ax = b, where

              [ 1  3 -2 ]         [ x ]          [  8 ]
          A = [ 0  3 -5 ] ,   x = [ y ] ,    b = [ 11 ]
              [ 2  5 -8 ]         [ z ]          [ 19 ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [ 1  3 -2 |  8 ]
          [A|b] = [ 0  3 -5 | 11 ]
                  [ 2  5 -8 | 19 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1        3/1       -5/1       11/1    
      Row 3:    2/1        5/1       -8/1       19/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1        3/1       -5/1       11/1    
      Row 3:    0/1       -1/1       -4/1        3/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 3 and 2 .
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1       -1/1       -4/1        3/1    
      Row 3:    0/1        3/1       -5/1       11/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by -1 / 1 .
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1        1/1        4/1       -3/1    
      Row 3:    0/1        3/1       -5/1       11/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  3 / 1 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1        1/1        4/1       -3/1    
      Row 3:    0/1        0/1      -17/1       20/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by -17 / 1 .
      
      Linear System:
      
      Row 1:    1/1        3/1       -2/1        8/1    
      Row 2:    0/1        1/1        4/1       -3/1    
      Row 3:    0/1        0/1        1/1      -20/17   
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  3 / 1 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1      -14/1       17/1    
      Row 2:    0/1        1/1        4/1       -3/1    
      Row 3:    0/1        0/1        1/1      -20/17   
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -14 / 1 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        9/17   
      Row 2:    0/1        1/1        4/1       -3/1    
      Row 3:    0/1        0/1        1/1      -20/17   
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  4 / 1 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        9/17   
      Row 2:    0/1        1/1        0/1       29/17   
      Row 3:    0/1        0/1        1/1      -20/17   
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The unique solution is therefore
              (x, y, z) = (9/17, 29/17, -20/17) = (1/17) × (9, 29, -20).


  1.  
    -3x   +   6y   +   16z   =   36
    x   -   2y   -   5z   =   -11
    2x   -   3y   -   8z   =   15


    1. The matrix equation is   Ax = b, where

              [-3  6 16 ]         [ x ]          [ 36 ]
          A = [ 1 -2 -5 ] ,   x = [ y ] ,    b = [-11 ]
              [ 2 -3 -8 ]         [ z ]          [ 15 ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [-3  6 16 | 36 ]
          [A|b] = [ 1 -2 -5 |-11 ]
                  [ 2 -3 -8 | 15 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:   -3/1        6/1       16/1       36/1    
      Row 2:    1/1       -2/1       -5/1      -11/1    
      Row 3:    2/1       -3/1       -8/1       15/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 1 and 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -5/1      -11/1    
      Row 2:   -3/1        6/1       16/1       36/1    
      Row 3:    2/1       -3/1       -8/1       15/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -3 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -5/1      -11/1    
      Row 2:    0/1        0/1        1/1        3/1    
      Row 3:    2/1       -3/1       -8/1       15/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -5/1      -11/1    
      Row 2:    0/1        0/1        1/1        3/1    
      Row 3:    0/1        1/1        2/1       37/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 3 and 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -5/1      -11/1    
      Row 2:    0/1        1/1        2/1       37/1    
      Row 3:    0/1        0/1        1/1        3/1    
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -2 / 1 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -1/1       63/1    
      Row 2:    0/1        1/1        2/1       37/1    
      Row 3:    0/1        0/1        1/1        3/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -1 / 1 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1       66/1    
      Row 2:    0/1        1/1        2/1       37/1    
      Row 3:    0/1        0/1        1/1        3/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1       66/1    
      Row 2:    0/1        1/1        0/1       31/1    
      Row 3:    0/1        0/1        1/1        3/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The unique solution is therefore
              (x, y, z) = (66, 31, 3).


  1.  
    3x   +   2y   -   z   =   4
    2x   +   5y   +   z   =   10
    4x   +   9y   -   z   =   -21


    1. The matrix equation is   Ax = b, where

              [ 3  2 -1 ]         [ x ]          [  4 ]
          A = [ 2  5  1 ] ,   x = [ y ] ,    b = [ 10 ]
              [ 4  9 -1 ]         [ z ]          [-21 ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [ 3  2 -1 |  4 ]
          [A|b] = [ 2  5  1 | 10 ]
                  [ 4  9 -1 |-21 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    3/1        2/1       -1/1        4/1    
      Row 2:    2/1        5/1        1/1       10/1    
      Row 3:    4/1        9/1       -1/1      -21/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 1 by  3 / 1 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    2/1        5/1        1/1       10/1    
      Row 3:    4/1        9/1       -1/1      -21/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    0/1       11/3        5/3       22/3    
      Row 3:    4/1        9/1       -1/1      -21/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  4 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    0/1       11/3        5/3       22/3    
      Row 3:    0/1       19/3        1/3      -79/3    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by  11 / 3 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    0/1        1/1        5/11       2/1    
      Row 3:    0/1       19/3        1/3      -79/3    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  19 / 3 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    0/1        1/1        5/11       2/1    
      Row 3:    0/1        0/1      -28/11     -39/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by -28 / 11 .
      
      Linear System:
      
      Row 1:    1/1        2/3       -1/3        4/3    
      Row 2:    0/1        1/1        5/11       2/1    
      Row 3:    0/1        0/1        1/1      429/28   
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 3 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -7/11       0/1    
      Row 2:    0/1        1/1        5/11       2/1    
      Row 3:    0/1        0/1        1/1      429/28   
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -7 / 11 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1       39/4    
      Row 2:    0/1        1/1        5/11       2/1    
      Row 3:    0/1        0/1        1/1      429/28   
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  5 / 11 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1       39/4    
      Row 2:    0/1        1/1        0/1     -139/28   
      Row 3:    0/1        0/1        1/1      429/28   
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The unique solution is therefore
              (x, y, z) = (39/4, -139/28, 429/28) = (1/28) × (273, -139, 429).


  1.  
    x   +   2y   -   3z   =   -5
    2x   +   4y   -   6z   +   w   =   -8
    6x   +   13y   -   17z   +   4w   =   -21


    1. The matrix equation is   Ax = b, where

              [ 1  2  -3  0 ]         [ x ]          [ -5 ]
          A = [ 2  4  -6  1 ] ,   x = [ y ] ,    b = [ -8 ]
              [ 6 13 -17  4 ]         [ z ]          [-21 ]
                                      [ w ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [ 1  2  -3  0 |  -5 ]
          [A|b] = [ 2  4  -6  1 |  -8 ]
                  [ 6 13 -17  4 | -21 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    1/1        2/1       -3/1        0/1       -5/1    
      Row 2:    2/1        4/1       -6/1        1/1       -8/1    
      Row 3:    6/1       13/1      -17/1        4/1      -21/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        2/1       -3/1        0/1       -5/1    
      Row 2:    0/1        0/1        0/1        1/1        2/1    
      Row 3:    6/1       13/1      -17/1        4/1      -21/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  6 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        2/1       -3/1        0/1       -5/1    
      Row 2:    0/1        0/1        0/1        1/1        2/1    
      Row 3:    0/1        1/1        1/1        4/1        9/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 3 and 2 .
      
      Linear System:
      
      Row 1:    1/1        2/1       -3/1        0/1       -5/1    
      Row 2:    0/1        1/1        1/1        4/1        9/1    
      Row 3:    0/1        0/1        0/1        1/1        2/1    
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -5/1       -8/1      -23/1    
      Row 2:    0/1        1/1        1/1        4/1        9/1    
      Row 3:    0/1        0/1        0/1        1/1        2/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -8 / 1 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -5/1        0/1       -7/1    
      Row 2:    0/1        1/1        1/1        4/1        9/1    
      Row 3:    0/1        0/1        0/1        1/1        2/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  4 / 1 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -5/1        0/1       -7/1    
      Row 2:    0/1        1/1        1/1        0/1        1/1    
      Row 3:    0/1        0/1        0/1        1/1        2/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The one parameter family of solutions is therefore
              (x, y, z, w) = (5t - 7,   1 - t,   t,   2) = (-7, 1, 0, 2)   +   t (5, -1, 1, 0).
      Geometrically, this is a line in ú4.


  1.  
    x   +   2y   -   3w   =   4
    2x   +   4y   +   z   -   6w   =   -8
    3x   +   6y   -   2z   -   2w   =   12


    1. The matrix equation is   Ax = b, where

              [ 1  2  0 -3 ]         [ x ]          [  4 ]
          A = [ 2  4  1 -6 ] ,   x = [ y ] ,    b = [ -8 ]
              [ 3  6 -2 -2 ]         [ z ]          [ 12 ]
                                     [ w ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [ 1  2  0 -3 |  4 ]
          [A|b] = [ 2  4  1 -6 | -8 ]
                  [ 3  6 -2 -2 | 12 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1       -3/1        4/1    
      Row 2:    2/1        4/1        1/1       -6/1       -8/1    
      Row 3:    3/1        6/1       -2/1       -2/1       12/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1       -3/1        4/1    
      Row 2:    0/1        0/1        1/1        0/1      -16/1    
      Row 3:    3/1        6/1       -2/1       -2/1       12/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  3 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1       -3/1        4/1    
      Row 2:    0/1        0/1        1/1        0/1      -16/1    
      Row 3:    0/1        0/1       -2/1        7/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -2 / 1 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1       -3/1        4/1    
      Row 2:    0/1        0/1        1/1        0/1      -16/1    
      Row 3:    0/1        0/1        0/1        7/1      -32/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by  7 / 1 .
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1       -3/1        4/1    
      Row 2:    0/1        0/1        1/1        0/1      -16/1    
      Row 3:    0/1        0/1        0/1        1/1      -32/7    
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -3 / 1 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        2/1        0/1        0/1      -68/7    
      Row 2:    0/1        0/1        1/1        0/1      -16/1    
      Row 3:    0/1        0/1        0/1        1/1      -32/7    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The one parameter family of solutions is therefore
              (x, y, z, w) = (-68/7 - 2t,   t,   -16,   -32/7)
                      = (-68/7, 0, -16, -32/7) + t (-2, 1, 0, 0)
                      = (1/7) × (-68, 0, -112, -32)   +   t (-2, 1, 0, 0) .
      Geometrically, this is a line in ú4.


  1.  
    x1   -   3x3   -   x5   =   1
    x2   -   2x3   -   x4   =   -2
    x1   +   x2   -   5x3   -   x4   -   x5   =   -1
    2x1   -   3x2   +   2x4   =   4


    1. The matrix equation is   Ax = b, where

              [ 1  0 -3  0 -1 ]       [ x_1 ]         [  1 ]
          A = [ 0  1 -2 -1  0 ]       [ x_2 ] ,   b = [ -2 ]
              [ 1  1 -5 -1 -1 ] , x = [ x_3 ]         [ -1 ]
              [ 2 -3  0  2  0 ]       [ x_4 ]         [  4 ]
                                      [ x_5 ]
      
    2. A is the coefficient matrix, b is the matrix of [right side] constants, and the augmented matrix is

                  [ 1  0 -3  0 -1 |  1 ]
          [A|b] = [ 0  1 -2 -1  0 | -2 ]
                  [ 1  1 -5 -1 -1 | -1 ]
                  [ 2 -3  0  2  0 |  4 ]
      
    3. Using the row reduction program on this linear system, we obtain

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    1/1        1/1       -5/1       -1/1       -1/1       -1/1    
      Row 4:    2/1       -3/1        0/1        2/1        0/1        4/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  1 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 4:    2/1       -3/1        0/1        2/1        0/1        4/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 4 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 4:    0/1       -3/1        6/1        2/1        2/1        2/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  1 / 1 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        0/1        0/1        0/1        0/1        0/1    
      Row 4:    0/1       -3/1        6/1        2/1        2/1        2/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -3 / 1 times row 2 from row 4 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        0/1        0/1        0/1        0/1        0/1    
      Row 4:    0/1        0/1        0/1       -1/1        2/1       -4/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 4 and 3 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        0/1        0/1       -1/1        2/1       -4/1    
      Row 4:    0/1        0/1        0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by -1 / 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1       -1/1        0/1       -2/1    
      Row 3:    0/1        0/1        0/1        1/1       -2/1        4/1    
      Row 4:    0/1        0/1        0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      
      [Note:   One can stop the row reduction at this row echelon form and use back substitution to obtain the solution.   Here we continue to reduced row echelon form.]
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -1 / 1 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -3/1        0/1       -1/1        1/1    
      Row 2:    0/1        1/1       -2/1        0/1       -2/1        2/1    
      Row 3:    0/1        0/1        0/1        1/1       -2/1        4/1    
      Row 4:    0/1        0/1        0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
    4. The two parameter family of solutions is therefore
              (x1, x2, x3, x4, x5) = (1 + 3s + t,   2 + 2s + 2t,   s,   4 + 2t,   t)
                      = (1, 2, 0, 4, 0) + s (3, 2, 1, 0, 0) + t (1, 2, 0, 2, 1).
      Geometrically, this is a plane in ú5.