ENGR 1405 Engineering Mathematics 1

Faculty of Engineering and Applied Science
2000 Fall


Problem Set 3
Solutions


  1. Find the products AB and BA, if possible, or explain why the product does not exist when

          [ 2  6  1  3 ]        [ 1  0 -1  2  6 ]
      A = [ 0  4  2  5 ] ,  B = [ 4  2  2  4  4 ]
          [ 1  2  2  8 ]        [ 3  1  6  8 -2 ]
                                [ 5  3  1  3  1 ]
    

    A is a (3×4) matrix and B is a (4×5) matrix.
    A B is therefore a (3×5) matrix while B A does not exist (because of the mismatch between the number of columns of the left-hand matrix B and the number of rows of the right-hand matrix A).

                       [ 1  0 -1  2  6 ]
         [ 2 6 1 3 ]   [ 4  2  2  4  4 ]
    AB = [ 0 4 2 5 ] . [ 3  1  6  8 -2 ]
         [ 1 2 2 8 ]   [ 5  3  1  3  1 ]
    

    As an example of the calculation of this product, its (2,4) element is
    (0×2 + 4×4 + 2×8 + 5×3) = 47
    The product is

                 [ 44 22 19 45 37 ]
            AB = [ 47 25 25 47 17 ] 
                 [ 55 30 23 50 18 ]
                 ==================
    

  1.  

    1. Determine, if possible, the inverse for each of the following matrices by using both the row reduction technique and the determinant / adjoint method.

    2. Where appropriate also find the product of the inverse and the matrix B.


    1.     U = [  3 -2 ] ,   B = [ 1 ]
              [ -7  5 ]         [ 3 ]
      

      The row reduction of [U | I], using the linsys.exe program, is:

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    3/1       -2/1        1/1        0/1    
      Row 2:   -7/1        5/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 1 by  3 / 1 .
      
      Linear System:
      
      Row 1:    1/1       -2/3        1/3        0/1    
      Row 2:   -7/1        5/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -7 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/3        1/3        0/1    
      Row 2:    0/1        1/3        7/3        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by  1 / 3 .
      
      Linear System:
      
      Row 1:    1/1       -2/3        1/3        0/1    
      Row 2:    0/1        1/1        7/1        3/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -2 / 3 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        5/1        2/1    
      Row 2:    0/1        1/1        7/1        3/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
      Therefore
       -1    [ 5  2 ] 
      U   =  [ 7  3 ] 
             ========
      

      The adjoint of any 2×2 matrix is very easy to find:

      adj [ a  b ]  =  [ d -b ]
          [ c  d ]     [-c  a ]
      

      The determinant is just (ad - bc) and the inverse is A-1 = adj(A) / det(A)
      (unless ad = bc, in which case det(A) = 0 and the inverse does not exist).
      Therefore

       -1          1          [ 5  2 ]     [ 5  2 ]
      U   =  ---------------  [ 7  3 ]  =  [ 7  3 ]
             3*5 - (-7)*(-2)               ========
      
       -1      [ 5  2 ] [ 1 ]     [ 11 ] 
      U  B  =  [ 7  3 ] [ 3 ]  =  [ 16 ]
                                  ======
      

      which is the solution to the 2×2 linear system U x = B.


    2.         [ -1  2  4 ]         [  .7  ]
          V = [  2 -4  1 ] ,   B = [  .85 ]
              [  5  6 -3 ]         [ -.53 ]
      

      The row reduction of [V | I], using the linsys.exe program, is:

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:   -1/1        2/1        4/1        1/1        0/1        0/1    
      Row 2:    2/1       -4/1        1/1        0/1        1/1        0/1    
      Row 3:    5/1        6/1       -3/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 1 by -1 / 1 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -4/1       -1/1        0/1        0/1    
      Row 2:    2/1       -4/1        1/1        0/1        1/1        0/1    
      Row 3:    5/1        6/1       -3/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -4/1       -1/1        0/1        0/1    
      Row 2:    0/1        0/1        9/1        2/1        1/1        0/1    
      Row 3:    5/1        6/1       -3/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  5 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -4/1       -1/1        0/1        0/1    
      Row 2:    0/1        0/1        9/1        2/1        1/1        0/1    
      Row 3:    0/1       16/1       17/1        5/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 3 and 2 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -4/1       -1/1        0/1        0/1    
      Row 2:    0/1       16/1       17/1        5/1        0/1        1/1    
      Row 3:    0/1        0/1        9/1        2/1        1/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by  16 / 1 .
      
      Linear System:
      
      Row 1:    1/1       -2/1       -4/1       -1/1        0/1        0/1    
      Row 2:    0/1        1/1       17/16       5/16       0/1        1/16    
      Row 3:    0/1        0/1        9/1        2/1        1/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -2 / 1 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1      -15/8       -3/8        0/1        1/8    
      Row 2:    0/1        1/1       17/16       5/16       0/1        1/16    
      Row 3:    0/1        0/1        9/1        2/1        1/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by  9 / 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1      -15/8       -3/8        0/1        1/8    
      Row 2:    0/1        1/1       17/16       5/16       0/1        1/16    
      Row 3:    0/1        0/1        1/1        2/9        1/9        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -15 / 8 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        1/24       5/24       1/8    
      Row 2:    0/1        1/1       17/16       5/16       0/1        1/16    
      Row 3:    0/1        0/1        1/1        2/9        1/9        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  17 / 16 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        1/24       5/24       1/8    
      Row 2:    0/1        1/1        0/1       11/144    -17/144      1/16    
      Row 3:    0/1        0/1        1/1        2/9        1/9        0/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      
      Therefore
       -1     1  [   6  30  18 ] 
      V   =  --- [  11 -17   9 ]
             144 [  32  16   0 ]
             ===================
      

      The adjoint of V is the matrix of cofactors of VT:

       
       T    [ -1  2  5 ]
      V  =  [  2 -4  6 ]
            [  4  1 -3 ]
      
      C   =  + | -4  6 | = (12 - 6) = 6 
       11      |  1 -3 | 
      
      C   =  - |  2  6 | = -(-6 - 24) = 30 
       12      |  4 -3 | 
      
      C   =  + |  2 -4 | = (2 + 16) = 18 
       13      |  4  1 | 
      
      C   =  - |  2  5 | = -(-6 - 5) = 11 
       21      |  1 -3 | 
      
      C   =  + | -1  5 | = (3 - 20) = -17 
       22      |  4 -3 | 
      
      C   =  - | -1  2 | = -(-1 - 8) = 9 
       23      |  4  1 | 
      
      C   =  + |  2  5 | = (12 + 20) = 32 
       31      | -4  6 | 
      
      C   =  - | -1  5 | = -(-6 - 10) = 16 
       32      |  2  6 | 
      
      C   =  + | -1  2 | = (4 - 4) = 0 
       33      |  2 -4 | 
      
                      [   6  30  18 ]
      ==>    adj(V) = [  11 -17   9 ] 
                      [  32  16   0 ]
      

      Expanding along the last row,
      det V = a31 C13 + a32 C23 + a33 C33
      = (5×18) + (6×9) + (-3×0) = 144

      Therefore
       -1     1  [   6  30  18 ] 
      V   =  --- [  11 -17   9 ]
             144 [  32  16   0 ]
             ===================
      
       -1       1  [   6  30  18 ]   [  0.7  ]      1   [  20.16 ]
      V  B  =  --- [  11 -17   9 ] . [  0.85 ]  =  ---  [ -11.52 ] 
               144 [  32  16   0 ]   [ -0.53 ]     144  [  36.00 ]
      
               [  0.14 ]
            =  [ -0.08 ]
               [  0.25 ]
               =========
      

      which is the solution to the 3×3 linear system V x = B.


    3.         [  2  8  6 ]         [ 1 ]
          H = [  3  4  0 ] ,   B = [ 1 ]
              [  0 16 18 ]         [ 1 ]
      

      The row reduction of [H | I], using the linsys.exe program, is:

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:    2/1        8/1        6/1        1/1        0/1        0/1    
      Row 2:    3/1        4/1        0/1        0/1        1/1        0/1    
      Row 3:    0/1       16/1       18/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 1 by  2 / 1 .
      
      Linear System:
      
      Row 1:    1/1        4/1        3/1        1/2        0/1        0/1    
      Row 2:    3/1        4/1        0/1        0/1        1/1        0/1    
      Row 3:    0/1       16/1       18/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  3 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        4/1        3/1        1/2        0/1        0/1    
      Row 2:    0/1       -8/1       -9/1       -3/2        1/1        0/1    
      Row 3:    0/1       16/1       18/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by -8 / 1 .
      
      Linear System:
      
      Row 1:    1/1        4/1        3/1        1/2        0/1        0/1    
      Row 2:    0/1        1/1        9/8        3/16      -1/8        0/1    
      Row 3:    0/1       16/1       18/1        0/1        0/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  16 / 1 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        4/1        3/1        1/2        0/1        0/1    
      Row 2:    0/1        1/1        9/8        3/16      -1/8        0/1    
      Row 3:    0/1        0/1        0/1       -3/1        2/1        1/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      

      Note the zero entries across the last row of the echelon form of matrix H.
      Therefore   H-1   does not exist.

      The adjoint of H is the matrix of cofactors of HT:

       T    [ 2  3  0  ]
      H  =  [ 8  4  16 ] 
            [ 6  0  18 ]
      
               
      C   =  + |  4  16 |  =  (72 - 0) = 72 
       11      |  0  18 |
      
      C   =  - |  8  16 |  = -(144 - 96) = -48 
       12      |  6  18 |
      
      C   =  + |  8   4 |  =  (0 - 24) = -24 
       13      |  6   0 |
      
      C   =  - |  3   0 |  = -(54 - 0) = -54 
       21      |  0  18 |
      
      C   =  + |  2   0 |  =  (36 - 0) = 36 
       22      |  6  18 |
      
      C   =  - |  2   3 |  = -(0 - 18) = 18 
       23      |  6   0 |
      
      C   =  + |  3   0 |  =  (48 - 0) = 48 
       31      |  4  16 |
      
      C   =  - |  2   0 |  = -(32 - 0) = -32 
       32      |  8  16 |
      
      C   =  + |  2   3 |  =  (8 - 24) = -16 
       33      |  8   4 |
      
                      [  72 -48 -24 ] 
      ==>  adj(H)  =  [ -54  36  18 ] 
                      [  48 -32 -16 ]
      

      Expanding along the first column of H,
      det H = a11 C11 + a21 C12 + a31 C13
      = (2×72) + (3×-48) + (0×-24) = 0

      Therefore the inverse does not exist and the solution to the linear system H x = B cannot be found by this method.

      [By row reduction, one can show that the solution is the one parameter family
              x = (1/16) × (4 + 24t,   1 - 18t,   16t)   ].


  1. Another matrix inverse technique.
    By using only the properties of matrix multiplication and the inverse

    1. Find A-1 when A2 - 2A = 5I, and

          A = [ 1 2 ]
              [ 3 1 ]
      


      Pre-multiply the equation   A2 - 2A = 5I   by A-1, then
      A - 2I = 5A-1
      Þ   A-1 = (A - 2I) / 5
      Therefore

       -1     1  [ (1-2)  (2-0) ]      1  [ -1   2 ]
      A   =  --- [              ]  =  --- [        ]
              5  [ (3-0)  (1-2) ]      5  [  3  -1 ]
                                      ==============
      

      [By the method of question 2(a) above, it is easy to verify that this matrix is indeed the inverse of A.]


    2. Find A-1 when A3 - 2A2 - A - 6I = 0, and

              [  1  3  2 ]
          A = [ -1 -2  1 ]
              [  0 -1  3 ]
      


      Again, multiply every term in the equation by A-1 on the left, to obtain
      A2 - 2A - I - 6 A-1 = 0
      Þ   A-1 = (A2 - 2A - I) / 6

       2         [  1  3  2 ]   [  1  3  2 ]   [ -2 -5 11 ] 
      A  = A A = [ -1 -2  1 ] . [ -1 -2  1 ] = [  1  0 -1 ] 
                 [  0 -1  3 ]   [  0 -1  3 ]   [  1 -1  8 ]
      
      Therefore

       -1     1 ( [ -2 -5 11 ]   [ -2 -6 -4 ]   [ -1  0  0 ] )
      A   =  ---( [  1  0 -1 ] + [  2  4 -2 ] + [  0 -1  0 ] )
              6 ( [  1 -1  8 ]   [  0  2 -6 ]   [  0  0 -1 ] )
      
              1  [ -5 -11  7 ]
          =  --- [  3   3 -3 ] 
              6  [  1   1  1 ]
             =================
      

      One can check that the product A A-1 = I, so that the matrix above truly is the inverse of A.


  1. The components in a particular electronic circuit can be described as being in one of three states: “low”, “medium” or “high”.

    After each cycle of operation, the following changes occur:
    20% of all components that were in a “low” state are now in a “medium” state.
    10% of all components that were in a “low” state are now in a “high” state.
    20% of all components that were in a “medium” state are now in a “low” state.
    10% of all components that were in a “medium” state are now in a “high” state.
    10% of all components that were in a “high” state are now in a “low” state.
    10% of all components that were in a “high” state are now in a “medium” state.
    All other components do not change state.

    If, before the first cycle,
          80% of all components were in a “low” state,
          20% of all components were in a “medium” state and
          no components were in a “high” state,
    then find the proportions of components that are in each of the three states

    1. after the first cycle;

      Incorporating the notes from the question, the transition matrix is

                            From:
                       low  medium  high
                 low  [ .7    .2     .1 ]
         To:  medium  [ .2    .7     .1 ]  =  A
                high  [ .1    .1     .8 ]
      
                  [ .7    .2     .1 ] [ .8 ]     [ .6 ]
      x  = A x  = [ .2    .7     .1 ] [ .2 ]  =  [ .3 ]
       1      0   [ .1    .1     .8 ] [ 0  ]     [ .1 ]
                                                 ======
      

      Therefore, after the first cycle,


            60% of all components are in a “low” state,
            30% of all components are in a “medium” state and
            10% of all components are in a “high” state.


    2. after the second cycle;
       
                  [ .7    .2     .1 ] [ .6 ]     [ .49 ]
      x  = A x  = [ .2    .7     .1 ] [ .3 ]  =  [ .34 ]
       2      1   [ .1    .1     .8 ] [ .1 ]     [ .17 ]
                                                 =======
      

      Therefore, after the second cycle,


            49% of all components are in a “low” state,
            34% of all components are in a “medium” state and
            17% of all components are in a “high” state.


    3. in the “steady state” (after infinitely many cycles).

      The steady state vector x is such that A x = x
      Þ     (A - I) x = 0.

                    [ -.3   .2   .1 ]
          A - I  =  [  .2  -.3   .1 ]
                    [  .1   .1  -.2 ]
      

      We have the additional constraint that the elements of   x   must add up to 1, represented by the extra row at the bottom of the linear system:

           [ -.3   .2   .1  | 0 ]
           [  .2  -.3   .1  | 0 ]
           [  .1   .1  -.2  | 0 ]
           [  1    1    1   | 1 ]
      

      Upon multiplying rows 1, 2 and 3 by 10, we obtain an equivalent linear system with integer-only coefficients, suitable for the linsys.exe program:

      Program to handle the Arithmetic in the Row Reduction of a Linear System
      VisualBASIC version (c)1999, Glyn George.
      
      Linear System:
      
      Row 1:   -3/1        2/1        1/1        0/1    
      Row 2:    2/1       -3/1        1/1        0/1    
      Row 3:    1/1        1/1       -2/1        0/1    
      Row 4:    1/1        1/1        1/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 1 and 3 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    2/1       -3/1        1/1        0/1    
      Row 3:   -3/1        2/1        1/1        0/1    
      Row 4:    1/1        1/1        1/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  2 / 1 times row 1 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1       -5/1        5/1        0/1    
      Row 3:   -3/1        2/1        1/1        0/1    
      Row 4:    1/1        1/1        1/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -3 / 1 times row 1 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1       -5/1        5/1        0/1    
      Row 3:    0/1        5/1       -5/1        0/1    
      Row 4:    1/1        1/1        1/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  1 / 1 times row 1 from row 4 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1       -5/1        5/1        0/1    
      Row 3:    0/1        5/1       -5/1        0/1    
      Row 4:    0/1        0/1        3/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -1 / 1 times row 2 from row 3 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1       -5/1        5/1        0/1    
      Row 3:    0/1        0/1        0/1        0/1    
      Row 4:    0/1        0/1        3/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 2 by -5 / 1 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1        1/1       -1/1        0/1    
      Row 3:    0/1        0/1        0/1        0/1    
      Row 4:    0/1        0/1        3/1        1/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Swap rows 3 and 4 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1        1/1       -1/1        0/1    
      Row 3:    0/1        0/1        3/1        1/1    
      Row 4:    0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Divide row 3 by  3 / 1 .
      
      Linear System:
      
      Row 1:    1/1        1/1       -2/1        0/1    
      Row 2:    0/1        1/1       -1/1        0/1    
      Row 3:    0/1        0/1        1/1        1/3    
      Row 4:    0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract  1 / 1 times row 2 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1       -1/1        0/1    
      Row 2:    0/1        1/1       -1/1        0/1    
      Row 3:    0/1        0/1        1/1        1/3    
      Row 4:    0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -1 / 1 times row 3 from row 1 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        1/3    
      Row 2:    0/1        1/1       -1/1        0/1    
      Row 3:    0/1        0/1        1/1        1/3    
      Row 4:    0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      Selected row operation:    Subtract -1 / 1 times row 3 from row 2 .
      
      Linear System:
      
      Row 1:    1/1        0/1        0/1        1/3    
      Row 2:    0/1        1/1        0/1        1/3    
      Row 3:    0/1        0/1        1/1        1/3    
      Row 4:    0/1        0/1        0/1        0/1    
      
      -----------------------------------------------------------------------------
      
      Program execution terminated.
      

      The steady state vector is therefore

      x = (1/3) × (1, 1, 1)

      and exactly one third of all components are in each of the low, medium and high states after infinitely many cycles.

      One can easily verify that A x = x.

      See also the associated Excel spreadsheet.