MATH 2050 Linear Algebra

(Section 4)
2009 Winter

Assignment 5   -   Questions

[Section 3.1   Determinants]
Due in class on 2009 February 16 (Monday)
  1. Find the determinant and the inverse of the matrix         [10 marks]
    A = 
[  8 -11 ]
[ -2   3 ]


  1. Find the determinant of the matrix         [10 marks]
    R = 
[ cos theta  -sin theta  0 ]
[ sin theta   cos theta  0 ]
[     0          0       1 ]


  1. Find the determinant of the matrix         [15 marks]
    C = 
[ 0  1  2  3 ]
[ 0  0  2  0 ]
[ 3 10 12 20 ]
[ 0  0  0  4 ]


  1. Find the determinant of the matrix         [10 marks]
    D = 
[  1  3  5  1  1 ]
[  2  1  4  2  2 ]
[  0  4  3  0  3 ]
[ -1 -6  2 -1  2 ]
[  2  8 -1  2  1 ]


  1. [Textbook, page 114, exercises 3.1, question 8(b)]                 [20 marks]
    Show that   | 2a+p  2b+q  2c+r |         | a b c |
| 2p+x  2q+y  2r+z |   =   9 | p q r |
| 2x+a  2y+b  2z+c |         | x y z |


  1. F = 
[ 1  1  0 ]
[ 2  1  c ]
[ c  0  1 ]         [10 marks]
    Find the value(s) of   c   for which the matrix   F   is singular.


  1. If   det X = 2   and   det Y = 3 , then calculate the value of         [15 marks]
    det (X^2 Y^(-1) X^T Y^3)   where possible.
    Under what circumstances does   (X^2 Y^(-1) X^T Y^3)   not exist?.


  1. The general 3×3 skew-symmetric matrix is         [10 marks]
    K = 
[  0  a  b ]
[ -a  0  c ]
[ -b -c  0 ]   (where   a, b, c   are any real numbers).
    Find   det K.


  Return to the Index of Assignment Questions   [To the Index of Assignments.]   [Solutions to this assignment] To the solutions to this assignment
[Available after February 16]
  Back to previous page   [Return to your previous page]

      Created 2009 02 02 and most recently modified 2009 02 02 by Dr. G.H. George